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Abstract. We present the exact numerical solutions of the Ginzburg-Landau
equations for the case of a static, cylindrically symmetric Abelian Higgs sunspot
model. The method of solving of these equations is presented in detail, and the
behaviour of the Higgs field amplitude, magnetic field strength, electric current
density, as well as of the diagonal components of the stress-energy tensor are
illustrated for spots carrying one to five flux quanta.
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1. Introduction

Saniga (1990, 1992) pointed out that there exists a remarkable similarity be-
tween the structure of the standard sunspof and that of the quantized magnetic
vortez in a type II superconductor. Namely, it has been demonstrated that the
fundamental geometric and (electro)magnetic properties of an isolated, fairly
symmetric spot can be reproduced well by the classical vortex solution of the
Ginzburg-Landau type Lagrangian density
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which describes a locally gauge invariant theory of a complex scalar Higgs field
® interacting with the electromagnetic gauge potential A, (henceforth the no-
tation of Saniga (1990) is used). The aim of this article is to present in detail the
method of (numerical) solution of the equations of motion following from (1)
for the case of a static cylindrically symmetric sunspot, and show explicitly the
radial distribution of the most important physical quantities inside the latter.

2. Forfnulation of the problem

Using a polar system of coordinates - 7, ¢, z - the cylindrically symmetric sunspot
may be parametrized by the ansatz:

Ao =0,A=A(r)e, , @ = f(r)ezp(ipp) (2)

where A is the spatial part of the electromagnetic vector potential and p - an
integer - stands for the number of flux quanta carried by the spot (Saniga 1990,
1992). Using dimensionless, reduced quantities the following equations of the
Ginzburg-Landau type can be obtained from the Lagrangian density (1)(Saniga

1990):
11d d
“Kirdr ("d—i)”[(%‘ ) +f2‘1]:°’ ®)

d 2
dr [r dr( A)] (__A)f 0. (4)
The important quantity K is, apart from a constant factor, identified with the
ratio between the radii of the penumbra and umbra, V2K = o/ Tu.

In order to miake the system of ordinary differential equations (ODEs) (3)-(4)
complete one has to define boundary conditions. It is obvious that the following
conditions must be met in the center of any sunspot:

Ar = 0) =0, (5)

f(r=0)=0. (6)
These can easily be verified by expanding, in the system of ODEs (3)-(4), both
A(r) and f(r) into a Taylor series in the neighbourhood of the spot’s center
(r = 0). The other two boundary conditions are defined at spatial infinity. We
require

flr—o00)=1 (7)
which physically corresponds to the nonzero value of the Higgs field vacuum.
The last boundary condition can be obtained from equation (4) with the help
of equation (7) :

A(r — 00) =0, (8)
which is plausible from the physical point of view as it tells us that the influence
of the flux tube (i.e, sunspot) vanishes at spatial infinity.

Equations (3)-(8) form a complete system.
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3. Method of numerical solution

The system of ODEs (3)-(4) has been solved numerically by a relaxation method.
The ODEs (3)-(4) have been rewritten to read

1 w, 1 p 2 _
—ﬁ(f +;f)+f[(f{—r—A) +f2~1]—0 9)
and { 1 p
" / 2 _
A"+ -4 —ﬁA+(E—A)f =0, (10)

where the prime denotes differentiation with respect to r.

One first replaces ODEs (9)-(10) by approximate finite difference equations.
(FDEs) on a grid of points that spans the domain r €< 0,00) . We use the
following standard approximations (see any textbook on numerical methods, e.
g., Rie¢anova et al. 1987) :

o = aj+12—haj-1 (11)
and o = Q¥ 20 + aj1 (12)
i B2 ’
where
o= {4 13

and analogously for o’ and o ; also
r; = (j — 1)h. (14)

One obtains, after having substituted equations (11)-(14) into equations (9)-
(10), the following relations for the j-th grid point:

fim— (2= fis1+(27=3) fi1
P20 - [p/K - (G- )hAP /G -1 +R2(FF - 1) +2/K?
1 (=D A+ (2 =3) A+ 2(p/K) RS}
TT2(-1) 2+ h2f2 41/ (- 1)° '

Equations (15)-(16) can only be used for 1 < j < N. The case j = 1 corresponds
to the center of the sunspot (see equation (14)), and boundary conditions (5)-(6)
yield

(15)

(16)

fI:O)Al:()- (17)

The case j = N corresponds to r — oo (spatial infinity is replaced here by the
value r = (N — 1) H, see equation’'(14)). Boundary conditions (7)-(8) lead to

fn=1, An=0. (18)
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The relaxation method determines the solution by starting with a guess
(which can be obtained, for example, by a variational procedure), and then using
an iteration procedure. The iteration procedure is determined by the system of
equations (15)-(16) for 1 < j < N

w_ QiA1= 3) A3, +2(/K)h (7)* 1

4 2 + h? (f;’)2 +1/(G =1)° 2(-1) (19)
and
o= (2 =) {1+ (25 -3)f_4 y
T K -G -0Ra) G =1+ R () - 1] + 2/ K
1
“SG-1) (20)

where the upper symbols ‘o’ and ‘n’ stand for the ‘old’ and ‘new’ (i.e., improved)
value, respectively. Equations (19)-(20) are solved iteratively for 1 < j < N
taking into account fixed boundary conditions (17)-(18). The first rough ap-
proximate solutions are refined by an iteration procedure until the following
condition for relative errors of fields A(r) and f(r)

max (|1 - 43/47] | U= 72/77]) < . (1)

is obtained, € representing the required accuracy.

Equation (20), as it stands, represents a cubic equation in the unknown
quantity fI', as ( fJT‘)2 appears in the denominator of this equation. This cubic
equation has been solved by an iteration procedure, too. This is defined by the
same equation (20). The value of f' on the RHS of equation (20) is taken as
the value obtained from the last iteration, and the improved approximation is
defined by the LHS of the same equation; the value f7 has been chosen as a
starting guess.

The last problem which one faces concerns the replacement of spatial infinity
by the finite value ry = (N — 1)h (see the equation (14) for j = N). Natural
number N is always chosen in such way that even a several times larger value
of the latter leads, within the required accuracy, to the same results for the
computed physical quantities.

4. Results

Once we have succeeded in solving the ODEs (3)-(4), complemented by the
boundary conditions (5)-(8), one can find some other important physical quan-
tities as the functions of a radial distance from the center of a cylindrically
symmetric sunspot.
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The magnetic field strength vector H is, in general, defined by the formula
H =V x A= curlA. (22)

Using cylindrical coordinates and ansatz (2) one obtains

1 d
H= o (rA), (23)
where H represents the z- (the only non-zero) component of the magnetic field.

We thus have

H=A+ %A (24)
for » > 0, and
H =2A (25)

for » = 0. It can easily be proved that lim,_¢(A/r) = H/2, in very much the
same way as relations (5)-(6) were obtained. A finite difference approximation
of type (11) can be used to examine equation (24) ( as well as equation (14)).
Equation (25) is replaced by the following approximate finite difference equation:

4A; — A3

Hr=0=H, = P

(26)

if boundary condition (17) is considered (see, e. g., Riecanova et al. 1987).
One can further verify that in the case of cylindrically symmetric spot (2)
the only non-zero components of the stress-energy tensor T, are as follows

1 df 2 1 1
Too=m(a—r) —fz(——A) +Z(f2—1)2+§H2, (27)

_ L (4 p 2 1 2 1
Trr =52 ('d?) “‘fz('K—r"A) (=0T HgHT (28)

and
r? df2r22p 27'22 2r22
TW“W(%) 3/ (E—A) -7 (-0 A 29)

There is no difficulty in transforming the RHS of the last three equations in-
to finite difference formulas for » > 0, using equations (11) and (13)-(14). A
little more complicated is the case of the sunspot’s center; the finite difference
approximations of equations (27)-(29) then read (they can be derived in a way
completely analogous to equation (26)):

1
Too(r =0) = gz (L4 ) (LB ) w2 Jany, o)

4fs — fs) 1(
4 2
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Figure 1. Magnetic field strength (H) distribution within a static cylindrically sym-
metric sunspot carrying p (1 < p < 5) magnetic flnx quanta, plotted versus the radial
distance (r) from the spot’s center for ratio K = 1.6.
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Figure 2. The same as in the Figure 1 for squared amplitude of the Higgs field (F).
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Figure 3. The same as in the Figure 1 for the ¢-component of the electric current

density vector.
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Figure 4. The same as in the Figure 1 for the energy density.
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Figure 5. The same as in the Figure 1 for the rr-component of the stress-energy

tensor.
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Figure 6. The same as in the Figure 1 for the pp-component of the stress-energy
tensor.
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1 4 1 1 '
T =0)= ooy (-5 (L B) L Loy,

and
Tpp(r=10)=0, (32)
where 61, = 1 if p = 1 and zero otherwise.

Finally, the (only) nontrivial component of the current density is given by
formula (Saniga 1990)

.7<p-—.7 etp—fz(I5 A), (33)
which vanishes in the center of sunspot. Since the purpose was to determine the
value of the magnetic field strength in the spot’s center (H;) which deviated
no more than = 1% from the ‘real’ value, one was forced to take the step
h = 0.05 and ry = 10 to approximate ‘spatial infinity’ for ¢ = 10~¢. Some of
our theoretical findings are visualised in the figures 1 to 6 (as in the previous
sections we use dimensionless, reduced quantities as introduced in Saniga 1990).
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