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Abstract. The paper presents analytical formulae of the long-period perturb-
ations of the third and fourth order in the Hamiltonian of the nonrestricted
problem of three bodies with comparable masses, in which the distance between
two of the bodies is much smaller than the distance of either from the third. It is
shown that phenomena close to resonances 1:1, 3:1, 2:1, and 4:2 may occur. In
this case the perturbed solution may differ significantly from the unperturbed,
and the terms of higher orders in the Hamiltonian must be taken into account.
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1. Introduction

The present study is the continuation of the investigation of particular case of
the motion of three points, in which the masses of the points are comparable,
and the ratio of the semi-major axis of their orbits is the small parameter. This
parameter must be less then 0.1. Solovaya (1970) obtained the solution of the
simplified canonical system of differential equations, in which in the Hamiltonian
did not contain terms of the third and higher orders. The question of the accuracy
of the solution in view of the missing members of higher orders in the Hamiltonian
was not considered as the analytical transformations are very difficult.

The investigation of the dynamical evolution of three bodies over long time
intervals require a more accurate expression of the Hamiltonian than in terms
of the second order only. Terms of the third and higher orders may represent a
substantial part of the perturbations. This applies particularly to the third-order
term of the Hamiltonian.

In his study of this problem Harrington (1968, 1969) took into account no
simplification of the Hamiltonian, using the numerical methods, in expressing
the Hamiltonian terms of higher orders. However, as he said, this requires very
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much computer time. The perturbations should be expressed by the analytical
expressions of higher orders.

Several software computer systems suitable for the analytical transformations
necessary for the solution of the described problem are now available. One of
them is Mathematica (see, e. g., Wolfram, 1991). We have used this product,
implemented on an IMB RISC System/6000 computer to determine the terms
of the third and fourth orders in the Hamiltonian for the dynamic system of
the particular case of three bodies, described in Solovaya’s work (1970). In this
sense this study is the continuation of the previous work.

2. Setting up the problem

Consider the case of the motion of three points with comparable masses, in
which the distance between two of them is much smaller than the distance of
either from the third. We will call the orbit of the point with mass m; relative
to the point with mass mg (the close pair) the inner orbit, and the orbit of the
distant point from the centre of mass of the close pair, with mass ms, the outer
orbit. In the following text and formulae all parameters belonging to the inner
orbit are denoted by index 1 (5 = 1), and those belonging to the outer orbit by
index 2 (j = 2).

Taking the invariable plane as the reference plane, the differential equations
of the motion in the Jacobian canonical coordinate system have the form

dL; _9F dl; _ 9F  dG; _9F  dg; _ OF

4 = _ ) - _J - __ 1
dt 6lj7 dt 8Lj7 dt (‘ng’ dt 8Gj7 ( )

where L;,G;,l; and g; are the canonical Delaunay elements. They can be ex-
pressed as

Lj:ﬂj,/aj, Gj :Lj l—e?, lj:Mj, g; = wy, (2)
where
momy (mg 4+ m1) mo
=k—, =k . 3
A mo + my B2 mo + mq + mo ( )

In the previous expressions the notations have the usual meaning; k — the
Gaussian constant, a; — the semi-major axis, e; — the eccentricity, M; — the
mean anomaly, and w; — the argument of the pericentron.

The eccentricity of both orbits, the inner and the outer, can take any value
from zero to one. The Hamiltonian of the system, expanded in terms of the
Legendre polynomial, have the form

2 3
o, L (i as 3, 1
=2 A () (22) (2020 — =
22 T orz TP I (al) <r2) <2C°S 7))t
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momy (mg + mq) ma
= =7 = 6
= mo +my fz mo +my + ma ©)
c0s® = — cosuy cosus — g sinu sinus, (7
e —-G?-G?
4= —12, (8)
2G1G>
Uj =05 + Wj- 9)

O is the angle between vectors r; and r2. Let r1 be the distance from m; to mao,
and 7o the distance from the centre of mass of m, and m; to ma. In Eq. (8) ¢
is the constant of the angular momentum, in Eq. (9) v; is the true anomaly. ¢ is
cosine of the mutual inclination of the orbits. It can take any value from 0° to
180°.

If only the first three terms of the Hamiltonian were taken into account
(Equation 4), the general solution of the dynamics system was obtained in terms
of hyperelliptic integrals (Solovaya, 1970). The Hamiltonian of this simplified
dynamical system depends only on a single angular variable ¢g; (the argument
of the pericentron of the inner orbit). The intermediate orbit of the close pair is
then a non-Keplerian ellipse with moving node and moving pericentron, whose
eccentricity varies periodically. The outer orbit is an invariable ellipse with mov-
ing node and moving pericentron.

If we take into account the next two terms in Eq. (4), which we will denote
as F3 and Fy,

L6 T1 3 as 4 5 3
FB=vy=2{(—= = ZcostO®— 2 1
3 74L§ <a1) <r2> <2cos Q] 5 cos@) , (10)
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LB\ (@35 g 30 oo 3
F4—75L—%0 (a_1> . gcos @—gcos ®+§ ) (11)

the right-hand side of the differential equation of motion will depend on two
anglular variables — g; and g,. In this case the eccentricity of the outer orbit will
also vary.

The numerical variations of Harrington (1968) showed that the eccentricity
of the outer orbit also has a slow periodic variation. In some cases resonance
may occur. The deviation of the motion from the mean motion is then large.

For calculating the perturbations over long time intervals it is convenient to
develop the theory of perturbations by asymptotic methods. Long-period per-
turbations are obtained if terms F3 and Fj in the Hamiltonian are replaced by
their averaged expressions.

3. Elimination of l; from F3 and F}

It is possible to eliminate I; and l5 from the terms of the third and fourth orders

of the Hamiltonian by an averaging technique. In the first stage, to obtain the

average expressions for F3 and Fj by using l;, denoted as F3 and Fj, we must

calculate the integrals

1 2 . 1 2w

F3; = — F3dl Fy=— Fydl. 12
3= 5o ; 3ali, 1= 5 | g1al; (12)

For this purpose we will replace the variable of integration and all variables

in F3 and in Fy via eccentric anomaly FE;. The Keplerian equation yields the

differential of the Delaunay element /; in the form:

dlj = (1 — €5 COSEJ') dEj. (13)

The Keplerian laws yield the following expressions for true anomaly v;, the
mutual distances of the points r;, and for cos ©:

a; (cosE; —e;)

COSU]' = r—, (14)
J
aj\/1—e? sinE;
sinv; = " ’ , (15)
J
r; =a; (1 —e; cosEj), (16)

cos©® = Ry cosvy + Re sinwv;. (17)
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Coefficients R; and R, depend on the orbital elements of the remote point as

Ry = Bj sinws 4+ By coswvs, (].8)

Ry = (4 cosvs + (5 sinwvy, (19)

where constants By, Ba, C7 and Cs are functions of the arguments of pericentrons
w; of the orbits of the inner and outer component, which are in our case one
of the canonical Delaunay elements, g;, in the invariable plane. They satisfy the
following relations:

B; = cosg; sings — q cos gs sin gy, (20)
By = —cosg; cosgs — ¢ sin gy sin ga, (21)
C1 = cosgs sing; — q cos gy sin gs, (22)
Cy = —sing; sings — q cosg; €os gs. (23)

If cos ©, cos vy, sin vy, and r; in Eq. (10) for F'3 are replaced in this order by
the right-hand sides of their expressions 17, 14, 15, and 16, we will obtain the
following form for Fj:

LS (a\"
o= L (22) (1- )2
3 Y4 Lg (T2> ( €1 COS 1) X

-3 ((—61 +cosE) Ry ++/1— & Ry sinEl)

x 5 +
3
5 ((—61 +cosEy) Ry ++/1— € Ry sinEl)
+ - 24
2 (1— ey cos By)? (24)
Replacing Fy (Eq. 11) similarly we obtained:
Lfl5 az 5 2
Fy = 75L—%0 (E) (1—e1 cosEr)” x
2
5 15 ((—e1 +cosEy) Ry +/1— &R, sinEl)
x |- +
8 4
4
35 ((—61 +cosEr) Ry ++/1—€e?Ry sinEl)
+ (25)

8(1l—e cosE1)2
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After integrating the last formula of F3 and Fy from 0 to 27, we obtained the
average expressions for F3 and Fj in terms of 1 as

_ 1 27 27
F3 o A F3 dl1 o o 3( €1 COoS 1) d 1
5 L8 fap\*
= g™ L—% (E) [3(4e1 +3e}) R —5(3er +4€l) RS-
— 15 (61 — e‘;f) RlR%] , (26)
and
_ 1 2 1 2
F4 = — F4 dl1 = — F4 (1 — €1 COSEl) dE1
27r 0 2'/T 0

3 L8 [a)’ ) .
=6—4’Y5L—%0(E) [(8+40€f +15€7) —

—10(4+41ef +18€} ) R} +35 (1 + 12¢€f + 8e}) R +
+10(—4+ef+3ef)R3+35(1—2€f +ef ) Ry +

+70(1+56f —6ef) RiR3 ] . (27)

4. Elimination of I, from F3 and F},
If Ry, Ry, cosws, sinvs, and 75 in Eq. (26) for F3 are replaced in this order by

the right-hand sides of their expressions 18, 19, 14, 15, and 16, we obtained the
following form for Fj:

5 I8 [3(46 136 <Bz (—es + cos Ez) + By /1 — €2 sinEg)
1 1 -

o= 20t
3 16 ™ L8 (1— ey cos Fy)®

3
(BQ (—62 +COSE2) + B1 /1 — 6% sinEg)
—5(3e1 +4e}) = -
(1 —e2 cosEy)

By (—e2 + cos Es) + By /1 — €2 sin Fy "
(1—ey cosEy)"

2
X (01 (—ea + cos Es) + Cyy/1 — €2 sinEg)

—15 (e1 — €3)

(28)
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The replacement of similar variables in F; (Eq. 27) yields the following expres-
sion:

1
(8+40er +15¢f) — L
(1 — ez cos E»)

3 I8
Fi = — v
+ T 64T

2
(B2 (—e2 +cosEy) + By \/1—e3 sinE2)

—10 (4 +41¢€% + 18¢] +
( ! ) (1 — ey cos Ey)”
4
(B2 (—e2 + cos Es) + By /1 — €3 sinE2>
+35 (1+12€] + 8ef) 5 +
(1 — e2 cos E»)
2
(Cl (—62 + COSEZ) + Cz \/ 1-— 6% sin Ez)
+10 (-4 + €] + 3€f) - +
(1 — e2 cos E»)
4
. (Cl (—62 + cos Ez) + Cz \/ 1-— 6% sinE2)
+35 (1 —2e +e}) 5 +
(1 — ez cos Es)
2
A (Bz (—ea + cos E») + By y/1 — €2 sin Ez)
+70 (1+5€3 —6ef) - X
(1 —es cos Es)
2
X (Cl (—62 + COSEQ) + Cs \/ 1-— 6% sin E2) (29)

The average expression for F3 in terms of /> is obtained by integrating the
last expression of F3 from 0 to 27. The result of this integration will be denoted

F:

— 1 27r_ 1 211'_
F3 = — F3 de = — F3 (]. — €9 COSEQ) dE2
27T 0 27T 0
15 LS e1e34/1 — €2
—1 V478 3 3
64 L5 (—1+e2)” (1+e2)

(16 B, — 15 B} B, — 15 B3 —

—15B5C} —10B;, C1 C> — 5B5 C3 + (12 By — 20 B} By—

— 20B3 +15B,C; +10B1C1 C2 +5B5C3) e ) . (30)

Using a similar procedure we obtain the average expression for Fy in terms lo
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from Eq. (29):

— 1 27r_ 1 271'_
F4 = — F4 dlg = — F4 (]. — €2 COS Ez) dE2
27T 0 27T 0
3 I8 Ji=é&
= L & [128 — 320 B? + 210 B —

1024 7 I (Sl 4 )" (14 )"

—320 BZ + 420 B} B3 + 210 By — 320 C? + 140 B C? +
+420 B3 C} +210C7 + 560 By B, C; C> — 320 C3 +

+420 B; C3 + 140 B3 C3 +420C; C3 + 210C; +

+ (640 — 3280 B} + 2520 Bf — 3280 B3 + 5040 B} B3+
+2520 B3 + 80 C? 4700 B2 C? + 2100 B C? —420C} +
+2800 B; By C; Cs + 80 C3 + 2100 B C3 + 700 B3 C3 —

— 840 C7 C3 —420C3) €F + (240 — 1440 B + 1680 B —
—1440 B3 + 3360 B B3 + 1680 B; + 240 C} — 840 B C} —
—2520 B2 C? + 210 C} — 3360 By By Cy Cy 4 240C% —

— 2520 B] C3 — 840 B3 C5 + 420 C; C3 +210C5 ) ef +

+ (192 — 240 B} + 105 B} — 720 B3 + 630 B} B3 + 525 B3 —
—720C} + 210 B C7 + 1050 B3 C} + 525 C{ +

+840 By B, C; Cy — 24003 4210 B C3 + 210 B3 C3 +

+ 630C; C3 +105C3 ) e3 + (960 — 2460 B + 1260 B{ —
—7380 B2 + 7560 B? B3 + 6300 B; 4+ 180 C? + 1050 B C? +
45250 B2 C? — 1050 C# + 4200 B; B, C; Cy 4+ 60C2 +

+ 1050 B C3 + 1050 B3 C3 — 1260 C; C5 — 210C5 ) €3 €3 +
+ (360 — 1080 B} + 840 Bf — 3240 B3 + 5040 B} B3+
+4200 B + 540 C? — 1260 B? C? — 6300 B2 C? + 525 C —
—5040 By By C, Co + 180 C; — 1260 B3 C5 —

— 1260 B2C2 +630C2C2 +105C4) et e?] (31)
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The last expressions for ?3 and for ?4 can be expressed in terms of e;, g;,
and g. For this purpose variables By, By, C1, and C» in Egs. (30) and (31) were

replaced by the right-hand sides of their expressions (20)—(23). F'3 then becomes

_ 1 2 27

— 1 —
F; = 2_ F;dly = — F3 (1 — €3 COSEQ) dFE,
™ Jo 27 0

15 L? €1 €2 \/l—eg

512 " I8 (1)’ (1 +e2)°

x [(4+36€}) (-1-11g+5¢> +15¢%) cos (g1 — o)+
+35¢€2 (1 —q) (1+q)° cos(3g1 — g2) +
+(4+3¢€) (-1+11g+5¢° —15¢°) cos (91 + 92) +

+35e2 (—1+q)° (1 +¢q) cos (3g1 + 92)] 5 (32)

— 1 27r_ 1 27r_

F4 = — F4dl2= —/ F4 (1—62 COSEQ) dE2
27 0 27 0
9 L V1—¢e3

Y5 —q X
8192 "L (~1+e2)" (1+e2)’

x [(8+40€] +15€7) (2+3e€3) (3—30¢° +35¢") +

+140¢€% (2+¢€3) (2+3€3) (-1 +8¢% — 7q*) cos2gs +

+735¢€f (2+3€3) (-1 +q2)2 cos4g; +

+735el%e2 (1 —q) (1+q)° cos (4g1 — 2g2) +

+140¢€} (2+€2) €2 (1+q)* (1—7q+74¢?) cos (291 — 2g2) +

+10 (8 +40€] +15¢€7) 3 (-1+8¢* — T¢") cos2gs +

+140€? (2+€2) €2 (=1+¢q)° (1+T7q+T7¢%) cos (201 + 292) +
+735¢4e2 (1— )% (14 q) cos (dgr + 292)] : (33)

These are the simple formulae for the long-period perturbations in the non-
restricted three-body problem.
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5. Conclusions

We have derived terms of the third and fourth orders in the Hamiltonian from
its form given by Eq. (4). They may be considered as the perturbing part of the
Hamiltonian of the nonrestricted three-body problem. Denote them as perturb-
ing function R:

R=F; +F,. (34)

In our case perturbing function R depends on two angular variables g, and g-.
The solution of the intermediate orbit determined by Solovaya (1970), and its
applications (Orlov and Solovaya, 1988), are considered to be unperturbed. The
general solution of the simplified equation of the unperturbed motion depends
on ten arbitrary constants of integration, A; and B;, for i = 1,2,... 5.

To obtain the approximate solution of the differential equations of the per-
turbed motion we can apply the method of variation of constants. We shall
consider the constants of integration A; and B; to be functions of time. The
differential equations for A; and B; have the form:

dA; OR dB;  OR (35)
dt oB;’ dt 0A;

These equations may be integrated by one of the classical methods, e. g., by
the iteration method. The combination of angular variables g; and g2, as can
be seen in Eq. (32) for the third-order terms, and Eq. (33) for the fourth-order
terms, can cause phenomena close to resonances 1:1, 3:1, and 2:1, 4:2. This
motion may be subject to large long-period perturbations, which must be taken
into account. The perturbed solution of the given problem differs significantly
from the unperturbed one.

The triple system x Ursa Maioris, whose components move along short-
period orbits with periods of 2 years (the inner orbit) and 60 years (outer orbit),
represents the very interesting object for applications. The numerical results of
Harrington (1969) have shown that in this case there is an extra resonance.
For system ( Aquarii, the unperturbed motion also differs from the perturbed
motion (Harrington, 1969). The applications of the formulae for the long-period
perturbations to a real stellar system, and the comparison of the results with
those obtained by numerical simulation, will be the subject of another paper.
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