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Abstract. The question about dynamical stability of extra-solar planets is
considered in the frame of the general three-body problem, i.e. a planet in the
binary system revolves around one of the components. The distance between
the star’s components is much longer than between the orbiting star and the
planet. In the differential equations with regard to the eccentricity and the
argument of the perigee we used the Hamiltonian without the short-periodic
terms, excluded by von Zeipel’s method.

The possible conditions of the dynamical stability of extra-solar planets are
presented by their orbital parameters – the mutual inclination of orbits and
the argument of the perigee of the planet.

The theory has been applied to the systems Gliese 86, γ Cephei, and 61
Cygni. The results were verified by the numerical integration.
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1. Introduction

With discoveries of the extra-solar planets a series of celestial mechanics ques-
tions arose. It is interesting to know how the planets and planetary systems
form and evolve. The principal question is the dynamical stability of planetary
orbits as far as they have high eccentricites and inclinations. Extra-solar planets
were discovered at single stars and in binary stellar systems. The present study
deals with the investigation of the dynamical stability of the planetary orbits in
binary systems, wherein the ratio of the semi-major axes of orbits of a planet
and of the distant star is less than or equal 0.1.

The dynamical stability is understood as the conservation of the configura-
tion of the system over an astronomically long time interval – the eccentricity
of the planetary orbit remains less than 1, the mutual inclination of the or-
bits changes in small intervals, and there are no close approaches among bodies
which can lead to the destruction of the system.

We studied the motion of extra-solar planets with masses from 1 mJ up to
50 mJ (mJ is the mass of Jupiter). The problem was considered in the frame of
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the general three-body problem, using the analytical theory (Orlov and Solo-
vaya, 1988). The planet in a binary system revolves around one of the com-
ponents. The motion is considered in the Jacobian coordinate system and the
invariant plane is taken as the reference plane. We used the canonical Delaunay
elements Lj , Gj , and gj (j = 1 for the planet’s orbit, j = 2 for the star’s orbit).
They can be expressed through the Keplerian elements as

Lj = βj
√

aj , Gj = Lj

√
1− e2

j , gj = ωj , (1)

where

β1 = k
m0m1√
m0 + m1

, β2 = k
(m0 + m1) m2√
m0 + m1 + m2

. (2)

In the previous expressions the notation has the usual meaning; m0, m2 –
the masses of the stars, m1 – the mass of the planet, k – the Gaussian constant,
aj – the semi-major axis, ej – the eccentricity, and ωj – the argument of the
perigee.

The eccentricity of the star orbit can take any value from zero to one. We
used the Hamiltonian of the system without the short-periodic terms. The short-
periodic perturbations in the motion of the both components with the period
of the revolution on the orbits are very small (Solovaya, 1972). Their values are
entirely insensible to the contemporary precision of the definition of the elements
or are on the boundary of that precision. Expanded in terms of the Legendre
polynomials and truncated after the second-order terms the Hamiltonian has
the form

F =
γ1

2L2
1

+
γ2

2L2
2

− γ3
L4

1

L3
2 G3

2

[(
1− 3 q2

) (
5− 3 η2

)
−

−15
(
1− q2

) (
1− η2

)
cos 2 g1

]
, (3)

where the coefficients γ1, γ2, and γ3 depend on mass as follows

γ1 =
β4

1

µ1
, γ2 =

β4
2

µ2
, γ3 = k2µ1µ2

β6
2

β4
1

, (4)

and

µ1 =
m0m1

m0 + m1
, µ2 =

(m0 + m1)m2

m0 + m1 + m2
,

q =
c2 −G2

1 −G2
2

2G1G2
, η =

√
1− e2

1 . (5)

c is the constant of the angular momentum, g1 is the argument of the perigee of
the planet orbit in the invariable plane, and q is cosine of the mutual inclination
of the orbits.
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In a general case the motion is defined by the masses of components and by
the six pairs of the initial values of Keplerian elements. For extra-solar planets
in Schneider’s Extra-solar Planets Catalog (Schneider, 2004) it is not possible
to obtain the complete set of elements for orbits. However, we can perform qual-
itative investigation of the differential equations with incomplete data. There
are presented several examples of the discovered extra-solar planets for which
orbital stability was investigated.

2. The circular orbits

The canonical system of the equations of motion, corresponding to the Hamil-
tonian (3), divides into following mutually combined equations with regard to
the eccentricity and the argument of perigee of the planet:

dG1

dt
= −15

8
γ3

L4
1

L3
2 G3

2

(
1− q2

) (
1− η2

)
sin 2 g1 , (6)

dg1

dt
=

3
8

γ3
L3

1

L3
2 G3

2

1
η

{
−η2 + 5 q2 +

1
G2

η q
(
5− 3 η2

)
+5

[(
η2 − q2

)
− 1

G2
η q

(
1− η2

)]
cos 2 g1

}
. (7)

These equations have the equilibrium solutions. The right part of Eq. (6) con-
verts to zero in one of the following cases:

q = ±1 , η = 1 , sin 2 g1 = 0 .

The first case, for which q = ±1, belongs to the planar case. We do not study
it.

Consider the case of circular orbits when η = 1. For this purpose we introduce
new variables:

λ1 = e1 cos g1 , λ2 = e1 sin g1 .

Then

η =
√

1− λ2
1 − λ2

2 , q =
c2 −G

2

2 − 1
2 G2

, G2 =
G2

L1
, c =

c

L1
.

The differential equations of motion with the new variables will be

dλ1

dt
= − η

L1

∂F

∂λ2

=
N

η

[(
3− 5 q2

) (
1− λ2

1

)
− 3 λ2

2 −
η q

G2

(
1− λ2

1 + 4 λ2
2

)]
λ2 , (8)



108 N.A. Solovaya and E.M.Pittich

dλ2

dt
=

η

L1

∂F

∂λ1

=
N

η

[
2

(
1− λ2

1

)
−

(
2− 5 q2

)
λ2

2 +
η q

G2

(
1− λ2

1 + 4 λ2
2

)]
λ1 , (9)

where N = γ3
L4

1

L3
2 G3

2

is a positive constant.

Eqs. (8) and (9) have the equilibrium solution λ1 = λ2 = 0. Let us investigate
the stability of the linearized system of these equations.

When keeping in right-hand part of Eqs. (8) and (9) only first order terms
of λ1 and λ2, then

dλ1

dt
= N

(
3− 5 q2 − q

G2

)
λ2 , (10)

dλ2

dt
= N

(
2 +

q

G2

)
λ1 , (11)

where η = 1 when λ1 = λ2 = 0. The corresponding characteristic equation is:

χ2 = −N2

(
5 q2 +

q

G2

− 3
) (

2 +
q

G2

)
. (12)

The stability properties for t ≥ t0 of the linearized system may be the
following (Lyapunov, 1950):

i) If the right-hand part of equation (12) is negative, we have two pure
imaginary roots. Its linearized solution is simply stable.

ii) If the right-hand part of equation (12) is positive, its solution is unstable.
This is the case if

5 q2 +
q

G2

− 3 < 0 ,

since always G2 > 1 . It may be when

q1 =
−1−

√
60 G

2

2 + 1

10 G2

< q <
−1 +

√
60 G

2

2 + 1

10 G2

= q2 .

So, the possible conditions of the stability of the circular orbits of extra-
solar planets are characterized by their orbital parameters, i.e. by the angle of
mutual inclination I and the parameter G2, which is a function of the ratio of
the semi-major axes of orbits of the planet and the distant star, the eccentricity
of the orbit of the distant star, and masses of all components of the system.

If the mass of the planet changes in the range from 1 to 50 mJ and the ratio
of semi-major axes of the orbits of the planet and the distant star lies in the
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Figure 1. The changes of the cosine of the mutual inclination for the parameter G2

in the interval 20–2000, for q1 (top) and q2 (bottom).

range of 0.01 to 0.10, then the parameter G2 will change within the limits of
20 to 2000. The boundaries of the stability of motion of a planet are plotted in
Fig. 1.

The condition for the stability of motion of a planet is that the angle of the
mutual inclination must be 141◦ < I < 39◦.

As an example we took the planet Gliese 86 from Schneider’s Catalog
(Schneider, 2004). It revolves around one of the star components of the long-
periodic spectroscopical binary system. The masses of the components are m0 =
0.79 m�, m1 = 4.9 mJ, and m2 = 0.4 m�. The orbital elements of the planet
(index 1) and the distant star (index 2) are following:

m1 sin i1 = 4.01 mJ,

e1 = 0.041, e2 = 0.200,

a1 = 0.117 AU, a2 = 19 AU,

i2 = 164.0◦,
Ω1 = 266◦,
T1 = JD(2 450 000) : 1146.54 .
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A considerably different mass of the planet, m1 = 15.5 mJ, we found in
Han’s paper (Han et. al, 2001). We produced the investigation of the stability
of motion of the planet for these two masses.

From the known value of m1 sini1 we obtained for the accepted masses
two values of the inclination of the planetary orbit. If the mass of the planet
m1 = 4.9 mJ, then the angle of the inclination of the planetary orbit i1 = 54.921◦

and if m1 = 15.5 mJ, then i1 = 14.994◦.
So as the node of the orbit of the distant star is unknown, we supposed its

value Ω2 = 0◦ and Ω2 = 180◦. From theory we obtained the following results.
For m1 = 4.9 mJ:

i) If Ω2 = 0◦, then the angle of mutual inclination of orbits I = 124.62◦.
ii) If Ω2 = 180◦, then I = 124.67◦.
In both cases the angle of the mutual inclination is located out of the limits

of stability and small deviations of initial elements may become large in the
future.
For m1 = 15.5 mJ:

i) If Ω2 = 0◦, then the angle of mutual inclination of orbits I = 158.66◦.
ii) If Ω2 = 180◦, then I = 159.02◦.
Such orbits are stable within the whole time interval.
In general, the planet in this binary system has the stable orbit when I ≥

141◦. This takes place when the mass of the planet m1 ≥ 10mJ.

3. The near circular orbits

Consider the motions close to a circular motion. The eccentricity may have the
meaning e1 =

√
1− ξ. In general case, the relation between ξ and t is defined

by the following equation (Orlov and Solovaya, 1988):

1
12

G
2

2

∫ ξ

ξ1

1√
∆

dξ =
B3

A1
+

1
16

γ
m2√

(1− e2
2)

3
n1 (t− t0) , (13)

where

n1 =
k

a1

√
m0 + m1

a1
, n2 =

k

a2

√
m0 + m1 + m2

a2
,

m =
n2

n1
, γ =

m2

m0 + m1 + m2
.

∆ is the polynomial of the fifth order. It can be separated into two polynomials
of the second and the third order, which have the form:

f2 (ξ) = ξ2 − 2
(
c2 + 3 G

2

2

)
ξ +

(
c2 −G

2

2

)2

+
2
3

(10 + A3) G
2

2 , (14)
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f3 (ξ) = ξ3 −
(

2 c2 + G
2

2 +
5
4

)
ξ2 +

+
[
5
2

(
c2 + G

2

2

)
+

(
c2 −G

2

2

)
− 1

6
G

2

2 (10 + A3)
]
−

−5
4

(
c2 −G

2

2

)
, (15)

where

A3 = 2− 6 η2
0 q2

0 − 6
(
1− η2

0

) [
2− 5

(
1− q2

0

)
sin2 g10

]
. (16)

For qualitative investigation of motion it is necessary to know the roots of
the equations f2(ξ) = 0 and f3(ξ) = 0. The subscript or superscript 0 denotes
initial values of all parameters.

The solution of this system of equations has a meaning in the region where
f2(ξ) f3(ξ) > 0 . All roots are real and positive, but only two of them, ξ1 and
ξ2, are always less than 1.

The meaning of the variable ξ, we are interested in, must be defined by
interval

ξ1 ≤ ξ ≤ ξ2 .

So ξ = 1− e2
1 .

In the initial moment for near circular orbits the value of

q0 = cos (i10 + i20)

may be arbitrary and η0 is defined from (5) as

η0 = 1− ε ,

where ε is a small positive quantity.
We will find the values of the three smallest roots by restricting to the first

order of ε. Then the smallest root of the equation of the second order (Eq. 14),
which we denote as α1, is

α1 = 1 +
Q

4 G2

(
2 G2 + q0

) ε (17)

and the two smallest roots of the equation of the third order (Eq. 15), denoted
as α2 and α3, are:

α2 = 1 +
Q

4 B
ε , (18)

α3 = a + ε

[
(a− 1)

(
2 a− 5 G2 q0 +

5
2

)(
1 + G2 q0

)
− 1

4
Q

]
×

× A +
√

A2 −B

2 B
√

A2 −B
, (19)
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where

A =
1
8

+
3
2

G
2

2 + 2 G2 q0 ,

B = 5G
2

2 q2
0 + G2 q0 − 3 G

2

2 ,

Q = −4
[
2 G

2

2 + G2 q0 − 5 G
2

2

(
1− q2

0

)
sin2 g10

]
,

a = 1 + A−
√

A2 −B . (20)

The coefficient Q is always less than zero. The coefficient B maybe positive
or negative in dependence on the mutual inclination of the orbits.

Consider the case when the mutual inclination of the orbits is such that
B > 0. Then α1 < 1, α2 < 1, α3 > 1, and α1 < α2. Consequently,

α2 ≤ η2 ≤ α1 . (21)

When ε→ 0, α1 → 1, and α2 → 1, then η2 → 1.
We may take ε so small that always

∣∣η2 − 1
∣∣ < δ for t > t0. It means that if

α2 ≤ η2 < α1 the circular motion is stable with respect to e1 (Chetaev, 1965).
In the case when the mutual inclination of the orbits is such that B < 0 the

root α3 is the smallest root and the lower limit of η2 = α3. When ε → 0 then
η2 = a < 1 and it is possible to pick up such small δ > 0 that in some moment∣∣η2 − 1

∣∣ > δ, for an arbitrary small initial ε. In this case the circular motion is
unstable.

As an example of the motion near to circular consider the star system γ
Cephei. It is a binary star system with period P = 70 years. The following
data are again taken from Schneider’s Catalog (Schneider, 2004): The masses of
components are m0 = 1.59 m�, m1 = 1.76 mJ and m2 = 0.58 m�. The orbital
elements of the planet (index 1) and the distant star (index 2) are following:

m1 sin i1 = 1.59 mJ,

e1 = 0.2, e2 = 0.439,

a1 = 2.1 AU, a2 = 22 AU,

i2 = 51.3◦,
ω1 = 95◦, ω2 = 162.1◦,
Ω1 = 75.6◦,
T1 = JD(2 450 000) : 53 156.8, T2 = JD(2 450 000) : 48 506.

From the known value of m1 sini1 we obtained value of the inclination of
the planetary orbit i1 = 64.61◦.
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Figure 2. Orbital evolution of the extrasolar planet with mass 1.76 mJ (0.00168 m�)

in the binary star system γ Cep. Up for Ω2 = 0◦ and down for Ω2 = 180◦.
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Because the longitude of the ascending node of the orbit of the distant star
is unknown we supposed its value Ω2 = 0◦, Ω2 = 90◦, and Ω2 = 180◦. From
theory we obtained following results.

i) If Ω2 = 0◦ the angle of mutual inclination of orbits I = 64.082◦. Within
the period of 3576 years the angle of the mutual inclination can change within
the interval 38.865◦ < I < 64.487◦ and the eccentricity within the range 0.105 <
e1 < 0.835. At the maximum value e1max

= 0.835 the minimum perigee distance
rT1 = 0.347 AU.

ii) If Ω2 = 90◦ the angle of mutual inclination of orbits I = 18.098◦. Within
the period of 2011 years the angle of the mutual inclination can change within
the range 17.560◦ < I < 18.560◦ and the eccentricity within the interval 0.192 <
e1 < 0.219.

iii) If Ω2 = 180◦ the angle of mutual inclination of orbits I = 84.628◦.
Within the period of 3431 years the angle of the mutual inclination can vary
as 39.052◦ < I < 84.718◦ and the eccentricity as 0.087 < e1 < 0.993. At the
maximum value e1max = 0.993 the minimum perigee distance rT1 = 0.015 AU.

In the first and third cases B < 0 the small deviations of initial elements
may become large in the future. In the second case B > 0 the motion of the
planet is stable.

The comparison of these results with the results obtained by the numerical
integration (see Fig. 2) for the case of γ Cephei showed that the used analytical
method gives good results. The boundaries of dark zones were computed from
the theory. The curves are results of the numerical integration.

The results indicate that the motion of such orbital system can be stable only
in the case when the mutual inclination of the orbits is within a defined interval.
When the angle of the mutual inclination approaches a certain value, the upper
limit of the eccentricity of the planet orbit increases. In the case of the unstable
circular or near circular orbits it means that any small initial deviations of the
elements of the planet orbit may become substantial in the its future motion.

4. Orbits with high eccentricities

Consider the third case, when the orbit of a planet has the eccentricity e1 > 0
and sin 2 g1 = 0. In the case when g1 = 0, the expression in the curly braces of
Eq. (7) is equal to

2 η2

(
2 +

1
G2

η q

)
. (22)

This expression converts to zero for η = 0. The case when the initial value of
e1 = 1 we do not consider.
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In the case when g1 = π/2, the expression in the curly braces of Eq. (7) is
equal to

2
[
5 q2 − 3 η2 +

1
G2

η q
(
5− 4 η2

)]
. (23)

This expression converts to zero for

q =
η

[
4 η2 − 5±

√
60 G

2

2 + (5− 4 η2)2
]

10 G2

,

which we denoted as q01 for the minus sign before the root term, and q02 for
the plus sign before the root term.

In the case g1 = π/2

A3 = A3max = 20− 18 η2
0 − 30 q2

0 + 24 η2
0 q2

0 . (24)

Then we can rewrite the equations of the second and the third orders as

f2 (ξ) =
(
ξ − η2

0

) [(
ξ − η2

0 − 4 G2 η0 q0 + 8 G
2

2

)
+

+ 4 G
2

2

(
1− 5 q2

0

) (
1− η2

0

)
+ 16 G

2

2

]
, (25)

f3 (ξ) =
(
ξ − η2

0

) [(
ξ − 5

4

) (
ξ − η2

0

)
−

− 3 G
2

2 ξ + G2 η0 q0 (5− 4 ξ) + 5 G
2

2 q2
0

]
. (26)

If expression (23) is negative then q01 < q0 < q02 and ξ = η2
0 is the least root

of the equation of the second order (Eq. 25), which is less than 1. In this case

ξ1 min =
√

1− η2
0 . The value of ξ1 max can increase. In this case the motion of

the planet is unstable.
If expression (23) is positive, then q0 < q01 or q0 > q02 and ξ is the least

root of the equation of the third order (Eq. 26), which is less than 1. In this case

e1max
=

√
1− η2

0 . The maximum value of the eccentricity of the planet’s orbit
cannot exceed the initial value of the eccentricity. The motion of the planet is
stable.

As an example we used the double star system 61 Cyg. The following ele-
ments of both orbits, the planet and the star, were taken from the Sixth Catalog
of Orbits of Visual Binary Stars (Hartkopf and Mason, 2003). The masses of
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Figure 3. Orbital evolution of the extra-solar planet with mass 16.5 mJ (0.01 m�) in

the binary star system 61 Cyg.

the components are: m0 = 1.11 m�, m1 = 10.5 mJ, m2 = 1 m�. The orbital
elements of the planet (index 1) and the distant star (index 2) are following:

e1 = 0.53, e2 = 0.48,

a1 = 3 AU, a2 = 80 AU,

i1 = 134◦, i2 = 54◦,
ω1 = 295◦, ω2 = 146◦,
Ω1 = 94◦, Ω2 = 176◦,
T1 = 1953.2, T2 = 1697.

From the theory we obtained I = 109.52◦ and q01 < q0. Within the period
of 22 412 years the angle of the mutual inclination can change as 109.36◦ <
I < 148.11◦ and the eccentricity as 0.518 < e1 < 0.943. At the maximum value
e1max

= 0.943 the minimum perigee distance rT1 = 0.170 AU. In this system
the encounters of the planet and the star is possible. The tidal phenomena can
occur.

From the numerical integration of the equation of the motion we obtained
the results which are in good agreement with the results obtained from the
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theory (see Fig. 3). The dark zones and curves obtained are similar to those in
Fig. 2. The boundary of dark zones were computed from the theory. The curves
are results of the numerical integration.

5. Conclusion

From this study we can draw the following conclusion. Theoretically, discovered
extra-solar planets in binary star systems move on stable or unstable orbits
around one of the components. They can revolve around the main star many
thousand years even on unstable orbits. The inclination and eccentricity of the
most observed extra-solar planets are large. Their orbits are different from the
orbits of the planets in the solar system.

From our theory it is possible to calculate orbital parameters of an extra-solar
planet – the angle of mutual inclination between the planet and the distant star
orbits and the parameter G2, which is a function of the ratio of the semi-major
axes of orbits of the planet and the distant star, the eccentricity of the orbit
of the distant star, and masses of all components. The parameters can be used
for the prediction of the stability of the motion of the extra-solar planet over
an astronomically long time interval. We showed this in the case of the binary
system Gliese 86. At one set of parameters the planet revolves around the main
star on the stable orbit. On the second set of the parameters the planet’s orbit
is unstable and can be destructed after some time by tidal forces of the star.

From observations of the extra-solar planet, which cover a short timescale
only, we cannot check the stability or unstability of its motion. For the solution
of the question of the stability we must use the analytical theory or numerical
integration.

The theory was verified by numerical integration on two examples. In the
case of orbits near to circular on the system γ Cephei, and in the case of high
eccentricity orbits on the system 61 Cyg. These binary system belong to the
best observed binary systems in which extra-solar planets were discovered. In
both cases we obtained very good agreement between the results obtained by
the theory and the numerical integration within the interval of 50 000 years,
covering several revolutions of the distant star.

For celestial mechanics the discoveries of extra-solar planets in the star sys-
tems raise many new interesting questions connected with the stability of their
motion and their dynamical evolution.
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