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Abstract. Program shellspec is designed to solve simple radiative transfer
along the line of sight in moving media. The scattered light from a central object
can be taken into account assuming an optically thin environment. Output
intensities are then integrated through the 2D projection surface of a 3D object.
The assumptions include LTE and optional known state quantities and velocity
fields in 3D. Optional (non)transparent objects such as a spot, disc, stream,
jet, shell or stars as well as an empty space may be defined (embedded) in 3D
and their composite synthetic spectrum calculated. The stars may have the
Roche geometry and known intrinsic spectra. Synthetic light curves or trailing
spectrograms can be produced by changing your view points on the 3D object.

An application to the accretion disc system of TT Hya type (Algol-type
eclipsing binary with a disc) is included and the influence of various effects on
the emerging spectrum is studied.

Key words: Radiative transfer – Accretion, accretion discs – Stars: binaries:
close – Stars: binaries: eclipsing – Stars: novae, cataclysmic variables

1. Introduction

There are sophisticated computer codes for calculating and inverting light curves
or spectra of binary stars with various shapes or geometry including the Roche
model (Lucy 1968; Wilson & Devinney 1971; Mochnacki & Doughty 1972; Rucin-
ski 1973; Hill 1979; Zhang et al. 1986; Djurasevic 1992; Drechsel et al. 1994;
Vinkó et al. 1996; Hadrava 1997; Bradstreet & Steelman 2002; Pribulla 2004).
In these codes, the stars are assumed to be nontransparent, stripped of any
circumstellar matter and their main concern or purpose is to deal with the com-
plicated geometry. However, it is often the case that such nontransparent objects
are embedded in some moving optically thin environment (Cherepashchuk et al.
1984) and/or are accompanied by shells, discs, jets or streams and one would
need to know at least an approximate spectrum, light curve and trailing spec-
trogram. Often the 3D model (behavior of state quantities and velocity field)
is known or expected as a result of hydrodynamic simulations or observational
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constraints (see for example Richards & Ratliff 1998). Unfortunately, 3D NLTE
calculations including complex hydrodynamics are difficult to carry out so one
alternative has been to perform a simple volume integration of emissivity, which
is often too oversimplified for the particular problem.

On the other hand, highly sophisticated model atmospheres and spectrum
synthesis codes were developed assuming NLTE and plane-parallel atmospheres
of hot stars (Hubeny 1988; Hubeny & Lanz 1992, 1995; Hubeny et al. 1994),
spherically symmetric atmospheres (Kubát 2001), or stellar winds (Krtička &
Kubát 2002). There are also sophisticated stationary plane-parallel line-blan-
keted model atmospheres and spectrum synthesis codes for a large variety of
stars assuming LTE (Kurucz 1993a, 1993b; Smith & Dworetsky 1988 and many
others). However, these are very specialized codes and their main concern and
purpose is to calculate the spectrum emerging from a stellar atmosphere and it
is difficult to apply them to the various cases outlined above. An exception is
the special case of circumstellar matter in the form of accretion discs in CV’s.
In this case, the disc is either approximated by a set of geometrically thin but
optically thick static local atmospheres and the output radiation is a sum of
properly Doppler shifted local emerging intensities (Orosz & Wade 2003; Wade
& Hubeny 1998; la Dous 1989) or, in case of optically thin discs or accretion disc
winds, the Sobolev approximation is used (Proga et al. 2002; Long & Knigge
2002; Rybicki & Hummer 1983). Horne & Marsh (1986) solved the radiative
transfer along the line of sight in a moving thin disc assuming liner shear and
showed that it is often important.

The aim of this paper is not to compete with the codes and models mentioned
above but rather to bridge the gap in these present approaches and provide a tool
which would solve in LTE the simple radiative transfer along the line of sight in
an optional optically thin 3D moving medium with the possible nontransparent
objects embedded in. We present the new code to synthesize the composite
spectrum of accretion structures in close binaries which undergo direct impact
accretion, as in the close Algols. However, the code is quite a multi-purpose,
independent, and flexible tool which can also calculate a light curve or a trailing
spectrogram where necessary, or can be used to study various objects or effects.

2. Basic astrophysics

2.1. Radiative transfer

In the following analysis, the calculations are carried out in the observer’s Carte-
sian frame with z pointing towards the observer. The radiative transfer equation
along the line of sight is:

dIν = (εν − χνIν)dz (1)

where Iν is the specific monochromatic intensity at the frequency ν, χν is the
opacity, εν is the emissivity and z is the distance along the beam. It is conve-
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nient to split the opacity into two contributions, the true absorption κν and the
scattering σν :

χν = κν + σν . (2)

Assuming LTE, the line opacity corrected for a stimulated emission is stated
simply as:

χline
ν = (1− e−

hν
kT )NlBluhνϕlu(ν − ν0)(4π)−1 (3)

where h is the Planck constant, hν is the energy of the transition from the lower
level l to the upper level u, k is the Boltzmann constant, T is the temperature,
Nl is the population of the l-th state of the corresponding ion, and Blu is
the Einstein coefficient for the whole solid angle. The velocity field enters the
equation via the shifted normalized Voigt profile ϕlu(ν − ν0) where

ν0 = νlu

(
vz(z)

c
+ 1
)

(4)

where νlu is the laboratory frequency of the line and vz = v.n is the radial
velocity (positive towards the observer) or projection of the local velocity vector
v to the line of sight unit vector n. The Einstein coefficient, Blu, is related to
the oscillator strength, flu, by:

Blu =
4π2e2flu

mechνlu
(5)

where e,me are the electron charge and mass, respectively and c is the speed
of light. The shape of the Voigt profile is determined by the thermal and the
microturbulent broadening, vtrb, characterized by the Doppler half-width

∆νD =
ν

c

√
2kT

m
+ v2

trb (6)

as well as by the damping broadening characterized by the frame damping
parameter

a = γ/(4π∆νD) (7)

where the damping constant

γ = γNat. + γStark + γV DW (8)

includes the contribution from the Natural, Stark and Van der Waals broaden-
ing. In the case of LTE, all the line opacity is due to the true absorption process
i.e.:

κline
ν = χline

ν (9)

We also included four other continuum opacity sources: the HI bound-free opac-
ity, the HI free-free opacity, Thomson scattering and Rayleigh scattering on
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neutral hydrogen.
For HI bound-free opacity, based on Gray (1976) and Mihalas (1978), we have:

κHIbf
ν =

2.8154× 1029

ν3
nHI

2
uHI

(1− e−
hν
kT )×[

n0+2∑
n=n0

(
gbf

n

n3
e−

−χn
kT ) +

kT

2I
(e−

−χn0+3
kT − e−

−I
kT )

]
(10)

where nHI is the neutral hydrogen number density, uHI is its partition func-
tion, n is the main quantum number, n0 is the value of n for the lowest level
of importance (levels with n < n0 have their photoionization edges at higher
frequency than ν and thus do not contribute to the opacity at ν), gbf

n (ν) is the
bound-free Gaunt factor of the particular level, χn is the excitation potential of
the level and I is the ionization potential of the ion. In the formula above, the
contribution from the levels: n0, n0 + 1, n0 + 2 is taken into account explicitly
while the contribution of the higher levels with n > n0 + 2 is integrated.
The HI free-free opacity (Mihalas 1978) is:

κHIff
ν = 3.69× 108gff nenHII

ν3T 1/2
(1− e−

hν
kT ) (11)

where gff (T, ν) is the free-free Gaunt factor, ne is the electron number density
and nHII is the proton number density.
Thomson scattering opacity (Mihalas 1978) is:

σTS
ν = neσe = 6.65× 10−25ne . (12)

For Rayleigh scattering on neutral hydrogen we adopted the following expression
from Kurucz (1970):

σRS
ν = nHI,0[5.799 10−13 + (1.422 10−6 + 2.784w)w]w2 (13)

where w = 10−16[min(ν, 2.463 1015)/c]2 and nHI,0 is the population of the
ground state of neutral hydrogen.
The total true absorption κν is the sum of the three opacity sources:

κν = κline
ν + κHIbf

ν + κHIff
ν . (14)

The total scattering σν is:
σν = σTS

ν + σRS
ν . (15)

The thermal emissivity associated with the true absorption can then be
written as

εth
ν = Bν(T (z))κν (16)

where Bν is the Planck function for the local value of the temperature. For
scattering emissivity we have

εsc
ν =

∫ ∫
σ(ν′, ν,n′,n)I(ν′,n′)dν′

dω′

4π
(17)
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where σ(ν′, ν, n′,n) is the scattering coefficient containing the general redis-
tribution function. It is this term which causes the main difficulty, since apart
from redistributing the frequencies (ν′ → ν), it also couples the radiation in
one direction n with the radiation field in all other directions n′. However, in
many applications (e.g., optically thin shells) this term can either be neglected
or governed by the scattering of light from the central object. We assume co-
herent isotropic scattering (as seen from the scattering particle frame) from a
blackbody or from a central spherical star with precalculated surface intensity
I?
ν or flux F ?

ν . In this case the emissivity reduces to:

εsc
ν = σνJν (18)

where Jν is the mean intensity. Ignoring limb darkening, Jν can be approximated
by:

Jν ≈ I?
ν1

ω/4π (19)

where ω is the solid angle subtended by the central star and

ω/4π =
1
2

1−

√
1−

(
R?

r

)2
 (20)

where R? is the radius of the central star and r is the distance from the center
(of the star/grid) and

ν1 = −ν
(v1

c
− 1
)

(21)

and

v1 = −r.(v − v?)
r

+ vz (22)

where v is the velocity field vector at the given point specified by the vector r
and v? is the velocity of the center of mass of the central object.
For R?/r << 1 an approximation including the limb darkening and the non-
isotropic dipole phase function g(n′,n) = 3

4 (1 + (n′.n)2) could be used:

εsc
ν =

3
4

(
1 +

r2
z

r2

)
σνJν (23)

where

Jν ≈
F ?

ν1

4π

R2
?

r2
(24)

where
F ?

ν1
= πI?

ν1

(
1− u

3

)
(25)

where u is the limb darkening coefficient.
The total emissivity is then

εν = εth
ν + εsc

ν (26)
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and the total source function is:

Sν = εν/χν . (27)

The flux, Fν , from the object at the Earth is then obtained by the integration
of the output intensities Iout

ν through the 2D projection surface of the 3D object:

Fν =
∫

Iout
ν dΩ (28)

where Ω is the solid angle on the sky subtended by the shell and

Fν =
∫ ∫

Iout
ν

D2
dxdy (29)

where D is the distance to the shell from the Earth.

2.2. Roche geometry

Both objects, star and companion, may have shapes according to the Roche
model for detached or contact systems. Descriptions of the Roche model can
be found in Kopal (1959), Plavec & Kratochvil (1964), Mochnacki & Doughty
(1972), Hilditch (2001) and many other papers and books. Let us assume a
Cartesian coordinate system (x,y,z) centered on one of the stars (labeled as 1)
such that the companion (labeled as 2) is at (1,0,0) and revolves around the z
axis in the direction of positive y axis. Let the mass ratio, q, always be m2/m1

or ‘companion/star’ and q < 1 will indicate the companion is lighter while q > 1
means the central star is lighter. Then, the normalized Roche potential, C, is
expressed as:

C(x, y, z) =
2

(1 + q)r1
+

2q

(1 + q)r2
+
(

x− q

1 + q

)2

+ y2 (30)

where r1 =
√

x2 + y2 + z2 and r2 =
√

(x− 1)2 + y2 + z2. The Roche surface of
a detached component is defined as an equipotential surface Cs = C(xs, ys, zs)
passing through the substellar point (xs, ys, zs) (point on the surface of the star
in between the stars, 0 < xs < 1, ys = zs = 0) which is localized by the ‘fill-in’
parameter fi ≤ 1. We define this by:

fi = xs/L1x, fi = (1− xs)/(1− L1x) (31)

for the primary and the secondary, respectively. L1x is the x coordinate of the
L1 point L1(L1x, 0, 0). The Roche equipotential surface Cs of a contact system
will be defined by the fill-out parameter 1 < fo ≤ 2:

fo =
C1− Cs

C1− C2
+ 1 (32)
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where potentials C1, C2 correspond to the potentials at the L1 and L2 points,
respectively. First, we calculate L1, L2, Cs and x-boundaries of the object using
the Newton-Raphson iteration method e.g.,

xi+1 = xi −
C(xi, 0, 0)− Cs

Cx(xi, 0, 0)
(33)

and then the 3D shape of the surface is solved using the Newton-Raphson it-
eration in y and z coordinates with the precision of about 10−5. Here are the
derivatives necessary for the task:

Cx =
∂C

∂x
= − 2x

(1 + q)r3
1

− 2q(x− 1)
(1 + q)r3

2

+ 2x− 2q

1 + q
(34)

Cy =
∂C

∂y
= − 2y

(1 + q)r3
1

− 2qy

(1 + q)r3
2

+ 2y (35)

Cz =
∂C

∂z
= − 2z

(1 + q)r3
1

− 2qz

(1 + q)r3
2

(36)

∂2C

∂x2
=

6x2

(1 + q)r5
1

+
6q(x− 1)2

(1 + q)r5
2

− 2
(1 + q)r3

1

− 2q

(1 + q)r3
2

+ 2 (37)

Gravity darkening is taken into account by varying the surface temperature
according to the following law:

T/Tp = (g/gp)β (38)

where g is the normalized surface gravity, β is the gravity darkening coefficient,
Tp, gp are the temperature and gravity at the rotation pole. The normalized
gravity vector is g = (Cx, Cy, Cz) and:

g =
√

C2
x + C2

y + C2
z . (39)

The gravity darkening factor of the surface intensity is then calculated as:

fGD = Bν(T )/Bν(Tp). (40)

Limb darkening is taken into account using Eq.49 and by calculating the cosine
of the angle θ between the line of sight unit vector n = (nx, ny, nz) and a normal
to the surface:

cos θ = −n.g/g = −nxCx + nyCy + nzCz√
C2

x + C2
y + C2

z

. (41)

Reflection effect is not included in the present version.
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3. Numerical performance

3.1. Solution of the radiative transfer equation

A number of optional objects (transparent, nontransparent, empty space, ...)
can be defined within the model and the line of sight may cross more of them
within a few grid points. A simple and stable method is needed to cope with such
velocity, density, temperature fields which are optional and are allowed to be
noncontinuous. Our problem is that of the integration of a first order ordinary
differential equation with known initial values at one boundary. The equation of
the radiative transfer along the line of sight at the frequency ν can be written
in the discretised form:

Ii+1 − Ii

zi+1 − zi
= εi+1/2 − χi+1/2(Ii+1 + Ii)/2 (42)

and simply integrated via the following recurrent formula:

Ii+1 =
Si+1/2

A + 1/2
+ Ii

A− 1/2
A + 1/2

(43)

where
A =

1
χi+1/2(zi+1 − zi)

(44)

and
Si+1/2 =

εi+1/2

χi+1/2
, I1 = 0 (45)

where
εi+1/2 =

εi + εi+1

2
, χi+1/2 =

χi + χi+1

2
. (46)

If the line of sight happens to hit a nontransparent object, the object is skipped
and the integration starts on the other side of the object with the boundary
condition:

I1 = I?(ν2)fLDfGD or I1 = Bν2(Teff )fLDfGD (47)

where

ν2 = −ν

(
v?

z

c
− 1
)

(48)

and v?
z is the radial velocity of the surface of the nontransparent object where

it intersects the line of sight. Rotation of the nontransparent objects is fully
taken into account here by including it into the calculations of v?

z . fLD is a limb
darkening factor:

fLD = 1− u + u cos θ (49)

where u is the limb darkening coefficient and θ is the angle between the normal
to the surface of the nontransparent object and the line of sight. fGD is a gravity



A description of the shellspec code 175

darkening factor which is important in the case of Roche geometry (see Sec.2.2)
and in which case Teff = Tp is the temperature at the rotation pole of a detached
star or the temperature at the rotation pole of the more massive star in the case
of a contact system, otherwise, it is the common effective temperature of the
spherical star. If the line of sight happens to pass through an empty space this
region is also skipped and the integration continues with Ii+1 = Ii.

3.2. Rotation of the observer’s frame

The shellspec code enables the user to look on the object from different points
of view and to calculate the corresponding spectra. The input model of the shell
is defined in its ‘body frozen’ Cartesian coordinates (x′′, y′′, z′′) with the z′′

axis corresponding to the intrinsic rotation axis of the model. The spectrum is
always calculated in the observer’s ‘line of sight’ Cartesian frame (x, y, z) with
z pointing to the observer and which has the same center of coordinates (see
Figure 1.). We first calculate the body frozen coordinates corresponding to the
grid points of the line of sight mesh by rotating the latter along the x axis by an
angle i (the inclination of the intrinsic rotation axis of the model to the line of
sight) to get new subordinate prime coordinates (x′, y′, z′) and then by rotating
the prime coordinates by a sequence of angles α around the z′′ = z′ axis:

x′ = x
y′ = y cos i− z sin i
z′ = z cos i + y sin i

z′′ = z′

x′′ = x′ cos α + y′ sinα
y′′ = y′ cos α− x′ sinα

(50)

Then we interpolate all the scalar and vector quantities from the body frozen
coordinates to the grid points of the rotated observer’s frame and, finally, make
a back-transformation of the vector quantities (velocity field) as listed below:

f(x′′, y′′, z′′) = (1− t)(1− u)(1− v)fi,j,k + t(1− u)(1− v)fi+1,j,k

+tu(1− v)fi+1,j+1,k + (1− t)u(1− v)fi,j+1,k

+(1− t)(1− u)vfi,j,k+1 + t(1− u)vfi+1,j,k+1

+tuvfi+1,j+1,k+1 + (1− t)uvfi,j+1,k+1 (51)

where

t = (x′′ − x′′i )/(x′′i+1 − x′′i )
u = (y′′ − y′′j )/(y′′j+1 − y′′j ) (52)
v = (z′′ − z′′k )/(z′′k+1 − z′′k )

Back-transform of vector quantities:

v′z = v′′z
v′x = v′′x cos α− v′′y sinα
v′y = v′′y cos α + v′′x sinα

vx = v′x
vy = v′y cos i + v′z sin i
vz = v′z cos i− v′y sin i

(53)
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x’’

y’’

x=x’

y’

z’=z’’
y

z
to obs.

Figure 1. Definition of the ‘body frozen’ frame (x′′, y′′, z′′) with the z′′ axis cor-

responding to the intrinsic rotation axis of the model and the ‘line of sight’ frame

(x, y, z) with z pointing to the observer.

3.3. Level populations and miscellaneous notes

The code assumes the known behavior of state quantities: temperature T , den-
sity ρ, and electron number density ne. The atomic number density of all atoms
is calculated as:

na =
ρ

wm
= ρ

∑
ai∑

aimi
(54)

where wm is the mean molecular weight and ai,mi are the element abundances
and atomic masses respectively. Abundances are defined relative to hydrogen:

ai = ni/nH (55)

where ni, nH are the element and hydrogen number densities. The hydrogen
abundance relative to the total atomic number density is a′H = 1/

∑
ai. Once

na is known hydrogen number density is calculated as nH = a′Hna and element
number densities then follow from their abundances. Solar abundances are as-
sumed (Grevesse & Sauval 1998) but the user is allowed to change all the ele-
ment abundances. The level populations are obtained from the Boltzmann and
Saha equations. Partition functions were taken from the uclsyn code (Smith
& Dworetsky 1988, Smith 1992). A fortran77 code containing the partition
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function routines is also available in Budaj, Dworetsky & Smalley (2002). The
Gaunt factors are calculated with the subroutines taken from the synspec code
(Hubeny et al. 1994). Damping constants can be found from the VALD atomic
line database (Kupka et al. 1999) or in Kurucz (1993a). If the damping con-
stants are not known they are estimated in the code in the way analogous to
the synspec code:

γNat. = 2.4734 10−22ν2
lu

γStark = 10−8nen
5
eff

γV DW = 4.5 10−9X0.4(nHI + 0.42nHeI)
(

T
104

)0.3
(56)

where nHeI is the neutral helium number density and the reader is referred to
the synspec source code for the details on X, neff . CGS units are used within
the code and the manuscript if not specified otherwise. The user needs to ensure
that the model is consistent with the abundances and is realistic, e.g., that it
satisfies the continuity equation and other conditions where necessary. The user
can easily modify the subroutine smod1 and insert his/her own prescription for
a model there or load a precalculated model from a file.

3.4. Adopted routines

Several routines used in this code were adopted from other sources. These are:
pfdwor (from uclsyn, Smith & Dworetsky 1988);
voigt0, state0, gaunt, gfree (from synspec, Hubeny et al. 1994); and
locate, hunt (from Numerical Recipes, Press et al. 1986).
We also used a few sections from our previous original codes for calculations of
radiative accelerations in stellar atmospheres of hot stars (Budaj & Dworetsky
2002). Apart from the above, the code was written from scratch and provides a
quite independent tool to study a large variety of objects and effects. Although
a substantial effort was devoted to check the calculations there is no guarantee
that the code is error free and we would appreciate any bug/error reports.

4. Compilation

The code is distributed in the form of several files:

shellspecxx.f the source code
pfdwor.inc an include file with the partition functions subroutine
param.inc an include file with array dimensions
shellspec.in an example of the main input file
line.dat an example of the line data input file
shellspec.mod an example of the input 3D model of the shell
abundances an example of the abundances input file
starspec1 an example of the input spectrum of the primary star
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starspec2 an example of the input spectrum of the secondary star
starspec3 an example of the input spectrum of the ‘third body’.

The code is written in standard fortran77 which makes it highly portable.
To compile and link the code under linux use the following command:

g77 shellspecxx.f -o shellspec

where ‘xx’ stands for the current version of the code. To run the code write:

./shellspec

You may need to adjust the array dimensions according to the available mem-
ory. As needed, modify the array dimensions in the file param.inc. The most
memory consuming parameters are: ndim1, ndim2, ndim3 which specify the xyz
dimensions and possibly also mfreq which determines the number of frequency
points.

5. Input

The list of all possible input files with their associated unit numbers follows.
These input files are described in more detail in the subsections below:

shellspec.in -(9) main input (geometry, objects...)
line.dat - (8) atomic data for the spectral line
shellspec.mod - (10) input 3D model of the shell (optional if imodel = 2)
abundances - (7) abundances (optional if ichemc = 1)
starspec1 - (12) spectrum of the primary star (optional if lunt1 > 0)
starspec2 - (13) spectrum of the secondary (optional if lunt2 > 0)
starspec3 - (14) spectrum of the ‘third body’ (optional if lunt3 > 0)

5.1. shellspec.in

This is the main input file where you can describe the geometry, dynamics and
optical properties of the moving medium which we often refer to as a shell or a
model. However, it can consist of many objects of various types (unfortunately,
one of them is also called a shell but the difference should be obvious from the
context). Various numerical and technical details are also specified in this file.

Imagine this shell as frozen in one instant of time, overlay it with the Carte-
sian coordinates (x′′, y′′, z′′) as seen in Figure 1 so that you have a convenient
object, e.g., a hot star in the center and z′′ corresponds to the intrinsic axis of
revolution of the shell and describe its properties (state quantities and veloc-
ity field) using these coordinates in this file. You can also load a precalculated
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model from an extra file. Various transparent and nontransparent objects can
be defined here. These include:

– STAR: a central nontransparent object which can rotate as a solid body with
an optional inclination of the rotational axis and have a net space velocity.
Can be treated as a blackbody or have its own spectrum. Limb darkening can
be applied to it. Also, the scattered light from this object can be taken into
account neglecting its rotation. Can be surrounded by a Keplerian disc which
is specified separately. May be of the spherical or Roche shape. Designed to
model mainly hotter or more luminous stellar components.

– COMPANION: a nontransparent object which can rotate as a solid body
with an optional inclination of the rotational axis and have a net space
velocity. Limb darkening can be applied to it. Can be treated as a black
body or have its own spectrum. May be of the spherical or Roche shape.
Designed to model mainly a secondary (cooler or fainter component of a
binary system).

– SPOT: a spherical object which can rotate as a solid body with an optional
inclination of the rotational axis and have a net space velocity. Designed
to model mainly spots on accretion discs, direct impact regions, rotating
circum-stellar (circum-binary) shells or third bodies.

– DISC: has either the shape of a rotating wedge (space complement to two
opposite cones) or of a slab surrounding the central object. It is farther
constrained by two spherical surfaces: its inner and outer radius (rin, rout).
This structure can be inclined if necessary. The velocity field v of the disc
adopted depends on M?, the mass of the central object and is Keplerian
within the disc plane, namely:

ω(r) =

√
G

M?

r3
v = ω × r (57)

where G is the gravitational constant, ω, r are the angular velocity and
radius vectors, respectively. It is possible to vary the densities as a power
law: ρ(r) = ρ(rin)(r/rin)edendc, ne = ne(rin)(r/rin)edendc or adopt the
following temperature stratification if necessary:

T (r) = Tdc

(
R?

r

) 3
4
(

1−
√

R?

r

) 1
4

. (58)

Here, Tdc is the characteristic temperature (Pringle 1981). Note that maxi-
mum disc temperature in this representation is about 0.488Tdc. Designed to
model mainly accretion discs.

– STREAM: has the shape of a cylinder with uniform velocity. Designed to
model mass transfer streams.
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– JET: has the shape of one or two opposite cones emerging from the center.
It allows optional inclination and is farther limited by its inner and outer
radius. Designed to model mainly jets or, e.g., ‘shadows’ cast by a cool,
extended secondary from a more compact hot primary.

– SHELL: has the shape of a shell surrounding the central object. A few ve-
locity fields are built in:

v(r) = vsh , v(r) = vsh

(
r

rin

)evelsh

, v(r) = vsh

(
1− rc

r

)evelsh

(59)

while the temperature is kept fixed and densities are either constant or satisfy
the continuity equation (see ‘shellspec.in’ for more information).

– BACKGROUND: is designed to add more flexibility to the code and to
fill the region not occupied by any of the previous objects at least with a
uniformly radially expanding medium when necessary. It may help to reduce
a numerical noise too by the appropriate choice of state quantities.

Most of these objects can be made nontransparent blackbody, dark matter,
or empty space by setting their density to unrealistic values within certain den-
sity intervals. There is also a way to ascribe an intrinsic spectrum to any of
these objects using parameters lunt1, lunt2 and lunt3. The detailed description
of all variables and their units is very extensive to fit into this paper and can be
found attached at the end of the example ‘shellspec.in’ file for easy orientation.

5.2. line.dat
This file contains the atomic data for the spectral lines in the format identical
to the synspec code. Each line of input corresponds to one spectral line with:

c dll -wavelength [nm]
c cod -element.ion cod, e.g. 26.02. It is interpreted as:
c 26=atomic number=iron, 02=2xtimes ionized i.e. FeIII line
c gf -log_10 (gf)
c elo,eup -energy of the lower and upper level in [1/cm]
c qlo -quantum number -J of the lower level[=>stat.weight=2*J+1]
c qup -quantum number -J of the upper level[=>stat.weight=2*J+1]
c gr0,gs0,gw0-radiative, Stark, Van der Waals damping constants

5.3. shellspec.mod

The file is read if imodel = 2. It contains the model of the shell and is read with
the following commands. Consult the example file if necessary.

c nbod1,nbod2,nbod3 -number of x,y,z grid points
c far,fat,faz -define the x,y,z grid points [cm]
c ftemp, fpress, fdens, fne -temperature,pressure, density,
c electron number density, respectively [cgs]
c fvr,fvt,fvz,fvtrb -x,y,z components of the velocity field [cm/s]
c fvtrb -turbulence [cm/s]

read(10,*)nbod1,nbod2,nbod3
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read(10,*)(far(i),i=1,nbod1)
read(10,*)(fat(i),i=1,nbod2)
read(10,*)(faz(i),i=1,nbod3)
do 30 i=1,nbod1
do 20 j=1,nbod2
do 10 k=1,nbod3

read(10,*)ftemp(i,j,k),fpress(i,j,k),fdens(i,j,k),fne(i,j,k)
p ,fvr(i,j,k),fvt(i,j,k),fvz(i,j,k),fvtrb(i,j,k)

10 continue
20 continue
30 continue

5.4. abundances

The file is read if ichemc = 1, otherwise built in solar abundances are assumed.
The number of abundances (input lines) is read from the first line (nichem).
nichem lines follow with atomic number (ii) and abundance (abii) of the ele-
ments whose abundance you wish to change. Abundance is the element number
density relative to hydrogen. Consult the example file if necessary.

5.5. starspec1

Intrinsic, not rotationally broadened spectrum of the central star (1. density
interval). If lunt1 > 0, two columns are read: xstar1, star1, where xstar1
is wavelength in Å and star1 is either Eddington flux Hλ in [erg/cm2/s/Å]
i.e. the same as output of synspec (lunt1 = 1) or central intensity Iν in
[erg/cm2/s/Hz/sterad] (lunt1 = 2). If your data are not in the units required you
can use xunt1, yunt1 parameters to convert otherwise set xunt1 = yunt1 = 1.0.

5.6. starspec2, starspec3

The same input as in starspec1 except that the relevant quantities are named
lunt2, xunt2, yunt2 or lunt3, xunt3, yunt3 in starspec2 and starspec3, respec-
tively, corresponding to 2. and 3. density intervals.

6. Output

Here is a list of all output files with their unit numbers.

shellspec.out - (2) more detailed output
fort.xx - (21,21+iang) 2D images at some frequency
shellspectrum - (4) spectrum of the shell
lightcurve - (11) light curve or trailed spectrogram

6.1. shellspectrum

The file contains several blocks separated by a blank line. Each block corre-
sponds to one rotation, the view point on the shell. The block has 6 columns:
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(1) lambda [Å], (2) velocity corresponding to lambda (c∆λ/λlu) [km s−1], (3)
Fν , absolute flux at the Earth [erg/cm2/s/Hz], (4) Fλ, absolute flux at the
Earth [erg/cm2/s/cm], (5) normalized flux, (6) normalized flux shifted in y-
axis for each subsequent rotation by the value ‘offset’ for easy plotting.

6.2. lightcurve

This file contains several blocks separated by a blank line. Each block corre-
sponds to one rotation, the phase of the shell. The block has 4 columns: (1)
phase, (2) radial velocity [km s−1], (3) magnitude = −2.5 log10 Fλ, and (4) nor-
malized flux.

6.3. shellspec.out

This file contains more detailed output of various quantities (opacities, emissiv-
ities, optical depth, ...), mainly details along one particular ray (line of sight)
and frequency specified in the input by ‘ionu, ior, iot’.

6.4. fort.xx

Here, fort.xx corresponds to fort.21 and higher. These are 2D-xy projection
images of the shell at different phases at the frequency specified by ionu. Each
file corresponds to one phase. Each file consists of several blocks separated by a
blank line. Each block corresponds to one x-value (y-varies) and has 3 columns:
(1) x [cm], (2) y [cm], (3) Iν in [erg/cm2/s/Hz/sterad].

7. Demonstration of an artificial model

As an illustration, we include a few pictures calculated for an artificial spectral
line and an artificial test model. It includes two stars, a Keplerian equatorial
disc around a bigger primary, a slightly inclined jet and a slowly expanding
shell surrounding the system. Stars are treated as blackbodies, the primary is a
sphere with limb darkening imposed on while the secondary fills its Roche lobe
and is subject to gravity darkening only. The centers of the jets and shell have
no net space velocity while the net velocity of the center of the disc corresponds
to that of the primary. Jets presess with the orbital period. Calculations were
performed for about 50 phases as seen from the orbital plane. The model was
defined in a cube with 101x101x101 points and spectrum was calculated at 241
frequency points. For the sole purpose of this illustration, the input values were
manipulated so that a contribution from each object could be seen. Figure 2
shows a 2D projection image (Iout

ν (x, y)) of a test model in the continuum (at
a frequency in the far wing of the spectral line) taken roughly at quadrature.
Different shapes of the primary and secondary illustrate the effects of limb dark-
ening and gravity darkening. Figure 3 shows the overall light curve of the model
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as it revolves with apparent primary and secondary minima at each frequency.
Figure 4 displays the trailed spectrogram. The central emission comes from the
slowly expanding shell. The double wave is caused by the two jet cones. The two
single waves (blue and red) originate in the disc and reflect its orbital motion
tracing that of the primary. Observe a depression in both single waves near the
primary minimum caused by the eclipse of the approaching and receding part
of the disc by the secondary star.

-4e+11 -2e+11  0  2e+11  4e+11

x (cm)

-4e+11

-2e+11

 0

 2e+11

 4e+11

y (cm)

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

Intensity

Figure 2. 2D projection image, Iout
ν (x, y), of a test model in one particular phase.

8. Application to accretion disc systems of TT Hya type

As another and more realistic example or test of the code, we have chosen to
calculate synthetic spectra of Hα with the geometry similar to the well-known
Algol type binary TT Hya. The star exhibits the emission features which were
ascribed to the disc (Plavec & Polidan 1976) surrounding the primary. This has
been studied by Kulkarni & Abhyankar (1980), Plavec (1988), Peters (1989), Van
Hamme & Wilson (1993), Albright & Richards (1996), Peters & Polidan (1998),
Richards & Albright (1999). The secondary contributes little to the spectrum.
If not stated otherwise, the calculations were performed with the relatively low
xyz resolution of 76 × 76 × 76 points and for the space region containing the
primary and the disc. The primary was treated as a blackbody with the following
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Figure 3. Overall light curve of the test model.
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Figure 4. Trailed spectrogram of the test model.



A description of the shellspec code 185

parameters: effective temperature Teff = 9800K, mass M = 2.25M�, radius
R = 1.9R� (Etzel 1988) and limb darkening u = 0. The disc was characterized
by: inner radius Rin = 2.5R�, outer radius Rout = 10R�, angular halfwidth α =
15◦, electron number density ne = 3× 109cm−3, density ρ = 5× 10−15g cm−3,
temperature T = 7000K, microturbulence vtrb = 0 km s−1, and inclination
i = 84.4◦. The following pictures illustrate the effects of varying just one of
many free parameters of the system.

Figures 5 and 6 display the effect of increasing the angular thickness of the
disc from 10◦ to 80◦ (angular halfwidth from 5◦ to 40◦). The overall emission
increases as we increase the emitting space volume, and the central absorption
decreases mainly for the higher angles. This occurs because the central depres-
sion is partly produced by the material projecting onto the star and there is
more material in the Keplerian disc which does not project onto the stellar disc
(surface) at higher angles, thereby filling the central absorption. Note also how
the width of the central absorption changes. This is not true for small angles
below 10◦ as it essentially causes the disc and its line profile to diminish.

Figures 7 and 8 display the effect of changing the outer radius of the disc
from 6 to 14 R�. The emission increases as the emission volume increases. This
parameter has probably the strongest effect on the position of the emission
peaks and width of the central depression. Peaks get closer for larger radius as
more matter at lower Keplerian velocities is involved. The central absorption
also varies slightly depending on the amount of the matter projected onto the
stellar surface. This absorption first deepens and then for R > 10R� weakens
as the thickness of the disc overcomes the radius of the primary. Blue and red
wings of the line are not affected at all.

Figures 9 and 10 display the effect of increasing the inner radius of the disc
from 2 to 8 R�. Contrary to the outer radius, the inner radius has little effect on
the emission from the beginning when it is a small fraction of the outer radius
since it does not change the emission volume noticeably. The changes are mainly
seen in the far wings of the profile as the higher Keplerian velocities are involved.
Only when it approaches the outer radius, the overall emission starts to decline
and the line weakens as the emission volume decreases, and the shape of the
profile acquires the new U-type shape with a central hole. This shape indicates
that the central depression is created by two different mechanisms (see below).

We also illustrate the profile shape if the disc were viewed from different
inclination angles (Figure 11). Starting from edge-on, i = 90◦, the two emission
peaks have the lowest intensity as the 2D projection area of the disc is smallest
(although the total emission volume is kept constant) and the disc may absorb
more of its own light on its way to the observer. We also observe the largest
separation of the emission peaks as we encounter the highest radial velocities
and the deepest central depression as most of the disc which is cooler than
the star projects onto the stellar surface. As the inclination decreases and we
begin to see the disc pole-on the emission peaks increase and their separation
and central depression vanish eventually merging into single peak emission for
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i = 0◦. One can also see that the central depression is caused by two different
effects. The velocity field and geometry of the disc itself can produce the U or V
type of the depression. Superposed on that is the absorption by the cool matter
projected onto the hotter stellar surface which quickly diminish if viewed out of
the disc plane.

Apart from state quantities and velocity field, every space point can be
assigned a value of microturbulence. It is included in the calculation of thermal
broadening as an additional thermal motion and can thus be used to model
chaotic velocity fields on the scale smaller than the mean free path of a photon.
It turns to be a useful free parameter as the mass transfer may not be a smooth
process and the velocity field of the spiraling gas in the disc may well depart from
the circular Keplerian orbits and be turbulent and these departures may easily
exceed the sound velocity which is of the order of 10 km s−1. Figure 12 illustrates
the effect of increasing the microturbulence in the disc from 0 to 60 km s−1.
Note that the inner radius Keplerian disc velocity is about 400 km s−1. The
emission peaks are gradually smoothed and are broader. The behavior of central
absorption is more complicated and interesting. ¿From the beginning it gets
narrower and deeper because of the desaturation effects of the microturbulence
but then the smoothing effect prevails.

Figure 13 displays the effect of increasing the electron number density of
the disc from 1 × 109 to 5 × 109cm−3. In this case, we assume that hydrogen
is almost fully ionized, in which case the density is linearly proportional to
the electron number density. This strongly enhances the emission peaks and
slightly deepens the central absorption. This huge impact on the emission can be
understood since the equivalent width in the optically thin case is proportional
to the population of the particular level, which in turn is proportional to the
total HI population. However, the ionization fraction of neutral hydrogen is
proportional to the electron number density, and if the latter is also proportional
to the density it follows that the total HI population increases with the square of
the density or the electron number density assuming the hydrogen abundance
and temperature are fixed (nHI/nHII ≈ nHI/nH ∼ nHI/ρ ∼ ne ∼ ρ). As
a consequence, the equivalent width, EQW, should behave also like ∼ nHI ∼
ρ2 ∼ n2

e which is seen in Figure 13.
Since the emission is so sensitive to the density we study the effect of different

density profiles in Figure 14. Let the density and electron number density be
inhomogeneous and have a power law dependence on the distance from the star,
namely, ρ ∼ rη. This was achieved by varying the exponent edendc ≡ η from
-1.0 to +0.5 and by normalizing the synthetic spectrum to the same emission
peak strength. It is apparent from the pictures that the line profiles for lower
exponents have broader wings while those for higher exponents have narrower
central depression. It can easily be explained as the lower exponents emphasize
the matter close to the star with higher Keplerian velocity while the opposite
is true for the higher exponents. It is interesting that the position of the peaks
does not vary much.



A description of the shellspec code 187

Figures 15 and 16 display the effect of varying the temperature of the disc
over an interval from 5000-10000K. The emission is strongest at about 7000K
and declines towards higher temperatures as the fraction of neutral hydrogen de-
clines due to ionization. The emission also declines towards cooler temperatures
as it decreases the population of the lower level from which the Hα originates.
At the same time, the temperature of the disc has a strong effect on the depth
of the central absorption which grows towards the cooler temperatures within
the range 10000 > T > 6000K because the source function along the line of
sight hitting the stellar surface steps down from the stellar surface to disc and
towards the observer. For cooler temperatures, the line-to-continuum emissivity
decreases (the continuum is provided by the star mainly) and the line disappears
from the spectrum forcing the central depression to merge with continuum as
well. The central absorption seems strongest at about 6000K.

All of the previous calculations decribed above were carried out assuming
the primary as a blackbody, i.e. having a smooth continuous spectrum. It was
very convenient to grasp the effect of one parameter on the spectrum at a time.
In reality, the primary star (as well as the secondary) has its own spectrum,
where the Hα is not negligible and in fact dominates the optical spectrum of
Algol-type binaries. That is why the tiny effects of such a small disc are usually
difficult to uncover unless the stellar spectrum is removed. Difference profiles are
calculated by subtracting the spectra of the stars from the observed spectrum
to enhance the contribution of the unknown sources (Richards 1993; Richards
& Albright 1999). This suggests that if the normalized continuum (value =1) is
subtracted from our calculations above they could be interpreted as difference
profiles which describe the contribution of the disc. To verify the extent to
which such an approximation is good we calculated a synthetic spectrum of the
primary (no black body anymore) with the code synspec (Hubeny et al. 1994,
Krtička 1998). We assumed zero rotational velocity to study the most extrem
case of Hα line. This spectrum was then assigned to the primary and a more
complex spectrum of the disc and primary was calculated using shellspec.
This combined spectrum is displayed in Figure 17. Consequently, we subtracted
that synthetic spectrum of the primary (not the value=1) from this combined
spectrum and were left with the difference profile which is compared with the
difference profile obtained from the earlier calculations (primary as a blackbody)
by subtracting an intensity of 1 from the data. The result is displayed in Figure
18 in which the profiles look similar except that the blackbody approximation
of the star overestimates the depth of the central depression. So, under certain
circumstances the blackbody primary may be a reasonable approximation in
calculating the difference profiles unless the depth of the central depression
is important, in which case the exact treatment of the primary with its own
precalculated spectrum is highly recommended.
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Figure 5. Effect of varying alpha (angular half-width of the disc) from 5 to 15 degrees.
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Figure 6. Effect of varying angular half-width of the disc from 15 to 40 degrees.
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Figure 7. Effect of varying the outer radius of the disc from 6 to 9 R�.
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Figure 9. Effect of varying the inner radius of the disc from 2 to 5 R�.
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Figure 10. Effect of varying the inner radius of the disc from 5 to 8 R�.
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Figure 11. Effect of changing the inclination of the disc from 90◦ to 30◦.
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Figure 12. Effect of increasing the microturbulence in the disc from 0 to 60 km s−1.
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Figure 15. Effect of varying temperature of the disc from 5000K to 7000K.
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Figure 16. Effect of varying temperature of the disc from 7000K to 10000K.
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Figure 17. Synthetic spectrum of the primary (dashed line), composite synthetic

spectrum of the primary with disc (solid line).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 6520  6530  6540  6550  6560  6570  6580  6590  6600  6610

N
or

m
al

iz
ed

 In
te

ns
ity

Wavelength (Angs.)

Figure 18. Difference profiles calculated when primary has its own intrinsic spectrum

(solid line) or when primary was treated as a blackbody (dashed line).



A description of the shellspec code 195

Acknowledgements. We would like to thank Drs. J. Kubát, A. Skopal and an
anonymous referee for their comments and suggestions. JB gratefully acknowledges
grant support from Penn State University and thanks Drs. K. Getman, M. Tsujimoto,
and the department computer staff for their assistance with computer related problems.
This research was supported by the NSF-NATO fellowship (NSF DGE-0312144) and
partly by the VEGA grant No. 3014 from the Slovak Academy of Sciences and the
Science and Technology Assistance agency under the contract No. 51-000802. This
study made use of the Vienna Atomic Line Data Base (VALD) services.

References

Albright, G.E., Richards, M.T.: 1996, Astrophys. J. 459, L99
Bradstreet, D.H., Steelman, D.P.: 2002, Bull. Am. Astron. Soc. 34, 1224
Budaj, J., Dworetsky, M.M.: 2002, Mon. Not. R. Astron. Soc. 337, 1340
Budaj, J., Dworetsky, M.M., Smalley, B.: 2002, Comm. Univ. London Obs. 82

URL=http://www.ulo.ucl.ac.uk/ulo comms/82/index.html
Cherepashchuk, A.M., Eaton, J.A., Khaliullin, K.F.: 1984, Astrophys. J. 281, 774
Djurasevic, G.: 1992, Astrophys. Space Sci. 197, 17
Drechsel, H., Haas, S., Lorenz, R., Mayer, P.: 1994, Astron. Astrophys. 284, 853
Etzel, P.B.: 1988, Astron. J. 95, 1204
Grevesse, N., Sauval, A.J.: 1998, Space Sci. Rev. 85, 161
Gray, D.F.: 1976, Observation and analysis of stellar photospheres, A Wiley-

Interscience publ., New York
Hadrava, P.: 1997, Astron. Astrophys., Suppl. Ser. 122, 581
Hill, G.: 1979, Publ. Dom. Ap. Obs. Victoria 15, 297
Hilditch, R.W.: 2001, An introduction to close binary stars, Cambridge Univ. Press,

Cambridge
Horne, K., Marsh, T.R.: 1986, Mon. Not. R. Astron. Soc. 218, 761
Hubeny, I.: 1988, Comput. Phys. Comm. 52, 103
Hubeny, I., Lanz, T.: 1992, Astron. Astrophys. 262, 501
Hubeny, I., Lanz, T.: 1995, Astrophys. J. 439, 875
Hubeny, I., Lanz, T., Jeffery, C.S.: 1994, in Newsletter on Analysis of Astronomical

spectra No.20, ed. C.S. Jeffery (CCP7; St. Andrews: St. Andrews Univ.), 30
Kopal, Z.: 1959, Close Binary Systems, Chapman & Hall Ltd., London
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