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Abstract. We derive approximative analytical formulas for the basic param-
eters of the Roche lobe, its radius and the position of the L1-point, for asyn-
chronously rotating component in a binary system. Our solution is valid in
the range of the mass ratio 0.1 < q < 10 and the parameter 1 ≤ p ≤ 20
(p = Porb/Prot). Deviations between numerical solution and that given by our
analytical approximation are less than 7%.
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1. Introduction

Basic interaction between the components of a binary system is due to grav-
itational forces given by masses of both the stars. In the simplest (idealized)
case the binary components move under their mutual gravitational attractions
on circular orbits about their common center of mass and rotate uniformly
with their orbital motion, i.e. angular velocity of rotation is equal to the or-
bital angular velocity both in magnitude and in direction. In such the case the
constant-density surface containing the inner Lagrangian point is the first clos-
est common equipotential of the binary. Importance of this critical surface for
the mass transfer between the components and thus evolution of the binary was
described in detail in many textbooks.

In the case that the component under consideration rotates non-synchro-
nously with the orbital revolution, the inner limiting surface is additionally
affected by the centrifugal and the Coriolis forces in the reference frame rotat-
ing with the star. This case was first outlined by Plavec (1958), who pointed its
relevance to a synchronisation problem in binaries. Subsequent investigation of
asynchronously rotating binaries was carried out by Kruszewski (1963). Limber
(1963) demonstrated clearly its derivation in terms of first approximation (i.e.
assuming mass motions on the star with respect to the rotating frame to be
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negligibly small), discussed deviations for the case of non-parallel proper ro-
tation and the orbital revolution, and considered properties relating to mass
loss for asynchronously rotating components. The problem of eccentric orbits
was studied by Wilson (1979) for the star’s surface of a constant volume, while
Hadrava (1986) studied the shape of stars distorted by both rotation an tidal
force in binaries with eccentric orbits within the first approximation of the Roche
potential.

In major cases of astrophysical applications only synchronous rotation is
assumed. This is supported by theoretical calculations of Zahn (1977), who
found that the time for synchronization of both the periods, tsync, strongly
depends on the separation between the star’s centers in the binary, A, and the
radius of the component under consideration, R, as

tsync/year ∼ q−2(A/R)6, (1)

where q is the mass ratio. So, one can expect that systems with a short or-
bital period (<∼ 10 days) and larger radii will contain components rotating
synchronously with the orbital revolution. In the contrary case, it is likely
that hot compact components in long-period binaries (e.g. symbiotic stars:
R ≈ 0.1 ÷ 0.01 R� and A ≈ 400 R�) will rotate asynchronously. Here the time
tsync � 107−108 years, which represents maximum lifetime of red giants in sym-
biotic stars. We note that this theoretical approach considers only tidal friction
to be responsible for the effect of synchronization.

In the interacting binaries the situation is, however, complicated by the mass
transfer between the components. Due to the mass transfer process a part of
the energy of the accreted material goes into spinning up the accreting star just
at its final stage of accretion – landing onto the surface of the accretor. As a
result the accretor will rotate faster than the orbital revolution (e.g. Popham
& Narayan, 1995). This effect seems to be dominant in the interacting bina-
ries regardless of their fundamental parameters. For example, Sion et al. (1995)
found a rapid rotation of the white dwarf (20% of the breakup velocity) in the
dwarf nova VW Hyi (Porb = 1.8 hours). The effect of a fast spinning of white
dwarfs in cataclysmic variables (CVs; e.g. AEAqr, WZ Sge, NSV2872, V471 Tau,
YY Dra) was noted and discussed by many authors at the recent conference on
CVs in Strasbourg (Hameury et al. 2005). Another interesting example concerns
an Algol-type binary TX UMa (Porb = 3.06 days), in which the asynchronous
rotation of the primary at Porb/Prot = 2.4 was derived directly from the radial
velocity excess around the primary minimum (Komž́ık 1998). For long-period
interacting binaries we have only indirect indications for a rapid rotation of ac-
creting stars. Here, Sokoloski & Bildsten (1999) discovered a 28-minute periodic
variation in the B-light curve of the symbiotic binary ZAnd (Porb = 758 days),
which they ascribed to the effect of a fast rotating magnetized white dwarf in the
system. In many CVs and some symbiotic stars there is a discrepancy between
the measured and predicted X-ray luminosity from boundary layers. Standard



Approximation of the Roche lobe parameters 19

theory predicts the disk and boundary-layer luminosity should be comparable
unless the white dwarf is rotating rapidly (e.g. Belloni et al. 1991; Sion et al.
1995; Skopal et al. 2004).

As a result, considering a fast rotation of active stars can help us to un-
derstand various phenomena observed in the interacting binaries. For example,
the case of asynchronous rotation of the star in question might be important
in modeling the gas hydrodynamic (e.g. Bisikalo et al. 1998; Nagae et al. 2004)
and can also play an important role to explain jets and outflows from active
stars in binaries – the ejected material during outbursts can be liberated more
easily from the gravitational force of a spinning accretor.

Accordingly the aim of this paper is to derive analytical formulas approx-
imating basic characteristics of the Roche lobe for the star rotating asynchro-
nously with the orbital motion and thus to make its application easy.

2. Binary potential for asynchronously rotating star

In this section we briefly introduce a more general potential function of a binary
system considering the asynchronous rotation of its member, but assuming the
vectors of angular velocity of rotation and the orbital angular velocity to be
parallel. This case was already derived by many authors as noted in Sect. 1.
Here we present such the generalised binary potential in the form as used by
Wilson (1979),

Ψ = −ω2A2

1 + q

[
1
r1

+
q

r2
+

x

r2
+

(1 + q)p2(x2 + y2)
2A3

]
, (2)

where
r2 = (x2 + y2 + z2)1/2, r1 = (r2 + 2rx + r2

2)
1/2 (3)

and
r = A(1− e2)/(1 + e cos ν) (4)

is the instantaneous separation of the binary components, ν is the proper ano-
maly, e the orbit eccentricity, A the principal semi-axis of the orbit, ω = 2π/Porb

is the orbital angular velocity and q is the mass ratio. (x, y, z) are Cartesian
co-ordinates with the origin in the center of the secondary component rotating
with the star at a constant angular velocity, Ωrot. The direction of the x-axis is
the same as that of the radius-vector from the center of star 1 to star 2. Finally,
the ratio p = Ωrot/ω (p = 1 for synchronous rotation). Note that the binary
potential for synchronously rotating members of binary represents a special case
of Eq. (2) for p = 1 and e = 0.

The position of the saddle point L1 is defined as the point where all acting
gravitational forces are zero, i.e. ∇Ψ = 0. As the point L1 lies at the x-axis, one
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Figure 1. Position of the L1 point on the line connecting the binary components (top)

and the effective radius of the Roche lobe (bottom) calculated according to Eqs. (2-7) –

solid lines. Both are plotted as a function of the parameter p for three different values

of the mass ratio q = 0.2, 1 and 5. The arrow denotes values corresponding to the

synchronous rotation (p = 1). Compared are our approximations calculated according

to relation (8) by using coefficients in Table 1 – dashed lines.

can obtain its position, xL1 , by solving the equation ∂Ψ/∂x = 0, i.e.

ω2A2

1 + q

[
A

(r + x)2
− qA

x2
− A

r2
− (1 + q)p2x

A2

]
= 0 (5)

The critical equipotential surface containing the L1 point is defined by a solution
of the equation 2Ψ − C1 = 0, where C1 = 2Ψ(xL1). This surface is the critical
Roche surface. It is not strictly spherical, so its radius, RL, is defined as the
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radius of a sphere of the same volume, i.e.

RL = (
3
4π

VL)1/3, (6)

where VL is the Roche lobe volume. For the sake of simplicity, we calculated the
Roche lobe volume as

VL = π

∫ xmax

xL1

r2(x)dx, (7)

where xmax is the intersection of the lobe with the x-axis from the outer side
of the binary and r(x) = [y(x) + z(x)]/2 is the radius of the closest circle to
the lobe at the point x. We approximated quantities y(x) and z(x) by distances
from the point x to the intersections of the line containing this x-point with the
lobe surface in directions of the y and z-axis, respectively.

3. Approximative formulas

Here we derive approximative analytical expressions of the Roche lobe radius
(the parameter RL below and in the table) and the position of the inner L1

point (xL1) for the case of an asynchronously rotating star on a circular orbit in
a binary system. We approached this task by preparing a grid of solutions for RL

and xL1 according to defining equations (2 to 7) as a function of the parameter
p = Porb/Prot and the mass ratio q. We found that the exact solutions can be
replaced by simplified expressions in a form of a logarithmic dependence as

RL/A, xL1/A = a11 + a12 ln(p) + a21 ln(q) + a22 ln(p) ln(q). (8)

Corresponding coefficients aij and the ranges of validity for parameters p and
q are introduced in Table 1. To get a reasonable range of maximal deviations
between numerically calculated quantities and those given by our approximative
relations, we had to divide the investigated range of p (1÷ 20) and q (0.1÷ 10)
into two parts: p = 1÷6 and p = 6÷20 for, separately, q = 0.1÷1 and q = 1÷10.
This approach allowed us to get maximal uncertainties under 7% (see Table 1).
Figure 1 shows a comparison of the exact solution with that made according to
our approximations for three selected values of q = 0.1, 1 and 5.

Finally, we note that our beginning approximative formulas we have recently
published (Skopal et al. 2004) are valid only for mass ratio 0.05 < q < 1 and
1 < p < 20, but still can be of some use. For example, for applications in the
symbiotic star research, where the mass of the active star (the accretor) is always
less than that of its giant companion and is often suspected to rotate rapidly
(e.g. Sokoloski & Bildsten, 1999). These solutions can be expressed as

RL/A = 0.361− 0.0904 ln(p) + [0.0710− 0.0183 ln(p)] ln(q) (9)

and
xL1/A = −0.513− 0.141 ln(p) + [−0.0970 + 0.0267 ln(p)] ln(q), (10)

and reproduce the numerical values to better than 6%.
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Table 1. Coefficients aij for Eq. (8) defining parameters RL and xL1 (see the text)

p q a11 a12 a21 a22 ∆? Parameter

1÷ 6 0.1÷ 1 0.38611 -0.10380 0.07872 -0.02215 5.5% RL

-0.51108 0.14863 -0.09878 0.02873 4.8% xL1

1÷ 10 0.39270 -0.10410 0.08534 -0.03736 6.2% RL

-0.52013 0.14964 -0.09210 0.04095 6.3% xL1

6÷ 20 0.1÷ 1 0.33774 -0.08345 0.06624 -0.01654 4.7% RL

-0.41727 0.10523 -0.08003 0.02027 5.7% xL1

1÷ 10 0.34653 -0.08570 0.03968 -0.01052 6.4% RL

-0.42761 0.10790 -0.04081 0.01055 7.1% xL1

? a maximum deviation from numerically calculated values (cf. Fig 1).

4. Conclusion

In this contribution we derived approximative analytical expressions for the
Roche lobe radius and the position of the L1-point for the case of asynchronously
rotating star on a circular orbit in a binary system. Our approximative relation
(Eq. 8, Table 1) is valid for p = 1 ÷ 20 and q = 0.1 ÷ 10 and reproduces the
numerical values to better than 7%.
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