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Abstract. The theoretical construction of a model of the range distribution of
radar meteors is presented. It provides us with possibility of the computation
of five important parameters connected with the structure of meteor showers
as well as physical features of meteoroids related to them. These are: the mass
distribution index, s, the shower flux density, Θm0 , the ionization coefficient,
β, the Levin’s parameter (self-similarity parameter), µ, the product of the
shape-density coefficient, K, and the ablation parameter, σ. We present details
of the numerical model in the article which proved to be a good explanation
for the real observed process. The model (RaDiM) is based on the overdense
echoes of shower meteors. It makes use of the long-term series of data that
have been collected by the Ondřejov meteor radar during almost five decades.
Its application and relevant results will be described in subsequent articles.

Key words: physics of meteors – radar meteors – range distribution – physical
parameters of meteoroids

1. Introduction

The Ondřejov meteor radar began its operation in 1958 (Plavcová and Šimek,
1960). Since then the valuable long-term series of data have been managed to
accumulate. The research has preferably been focused on four meteor showers:
Quadrantids, Perseids, Leonids and Geminids. Besides, the other meteor showers
have irregularly been observed as well, e. g., Giacobinids during its increased
activity in 1998 (Šimek and Pecina, 1999). Because the observations carried out
by the Ondřejov meteor radar are only single-station ones scientific research has
mainly been concentrated on activity monitoring of selected meteor showers
and determinations of their mass distribution indices and fluxes. However, a
method was developed in an attempt to connect the Ondřejov observations
with physical properties of meteoroids as well. The method is called the Range
Distribution Model (hereinafter referred to as the RaDiM). The principle of the
RaDiM is based on knowledge of the observed range distributions of overdense
radar echoes belonging to meteor showers. In a series of four articles we present
details of the model that allows us to determine some physical and chemical



84 D.Pecinová and P.Pecina

properties of the meteoroid as well as the parameters connected with the inner
structure of meteor showers. The first paper (I) deals with the RaDiM itself
and the process of collection and processing of input data. The other ones are
concerned with results. The second (II) is about the shower flux density and the
mass distribution index, the third (III) discusses a self-similarity parameter, a
shape-density coefficient and an ablation parameter while the last (IV) treats
an ionization coefficient and its velocity dependence. We have already published
the first simplified form of the model and its applications to two daily showers
belonging to the Taurid complex showers, ζ Perseids and β Taurids (Pecinová
and Pecina, 2005). However, there was a slight discrepancy between that form
of the theory and the observations there as mentioned hereinafter. So, it was
necessary to improve and extend the model in order to explain the observed
phenomena better. We succeeded in that and we present here an improved
completed theory that explains the observed reality very well.

2. Range distribution

Each radar echo registered by the Ondřejov meteor radar is characterized by
four quantities. These are: the time instant of the echo occurrence with an
accuracy of second, the time behaviour of the echo amplitude, the echo duration
(up to several minutes) and the range of a reflecting point on a meteor trail
from the radar. The unambiguous measurement of ranges runs into the interval
<60, 300> ∪ <360, 600> km. The blocking gap between 300 and 360 km on
a record arises from an artificial enlargement of measurement of ranges from
natural 300 km (corresponding to repetition frequency of 500 Hz) up to 600 km
and was installed to suppress recording of the ground based reflections (up to
60 km and periodically each 300 km).

When we sort out observed radar echoes into chosen range intervals according
to other characteristics (i.e., an observed time interval, a selected interval of a
duration), we can get a column chart similar to the diagram shown in Fig. 1.
Thus, we define the range distribution as the dependence of the echo rates on
ranges from the radar (the observation site).

The observed range distribution curve associated with a particular meteor
shower depends not only on the radar equipment used but also on the radi-
ant position that mirrors the fact that ionized meteor trails associated with a
particular meteor shower occur inside a restricted height interval. This interval
depends evidently on velocities and masses of meteoroids and also on their other
physical properties, e. g., on the ablation parameter σ and the shape-density co-
efficient K (e. g., Ceplecha et al., 1998). Since during the observations of meteor
showers we register simultaneously a lot of meteors with various masses, their
mass distribution described by the mass distribution index s together with the
shower flux density Θm0 contribute to the shape of their range distribution
curve. It follows that the RaDiM needs to be linked to the quantities that are
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Figure 1. This example of the typical range distribution was constructed from radar

meteors recorded during observations of the Geminids, between 23 and 3 UT, on

the 13th/14th of December, in 2000. The histogram comprises the overdense echoes

with durations exceeding 0.4 s. The vertical axis shows shower rates in particular

25-km-wide range intervals, which are represented by their initial points on the hori-

zontal axis.

associated with the inner structure of the meteor showers and the quantities
related to physical characteristics of the investigated meteoroids as well.

3. Range distribution model

3.1. Fundamental formula

As a consequence of the fact that the range distribution is a result of the con-
tribution of shower meteors having various masses, the theoretical model has to
be based on the generalization of the well-known mass distribution power law
(e. g., McKinley, 1961)

dN = cm−s dm, (1)

giving the number of meteors having masses within the mass interval (m,m +
dm). Here s stands for the mass distribution index, which we suppose to be
constant within the whole mass interval we consider and c is a normalizing factor.
The law was derived from observations over a large part of the sky. Assuming
that it is valid for any element of the echo plane and also for any sufficiently
short time interval, we can generalize it in the following way. Apparently, the
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larger collecting area and the longer time interval the greater number of meteors
we should observe. This results in a more general mass distribution power law
in the form (Belkovich, 1971):

d3N = cn m−s dm dS dt. (2)

Here dt is the element of time interval, dS = RdRdϑ is the element of the
collecting area within the echo plane expressed in the polar coordinates (R is the
distance from the observational site (radar), ϑ is the angle measured within the
collecting area of the echo plane, see later). The echo plane is defined as a plane
perpendicular to the radiant direction that runs through the observational site.
It means that the echo plane is the set of points at which a specular reflection
from meteor trails can occur. The collecting area is defined as an intersection
of the echo plane with the antenna pattern of a meteor radar. Since a shower
radiant moves with time the position of the echo plane changes and consequently
the size of the collecting area alters. Received power from all its points has to
exceed the minimal power that the radar is able to recognize as a signal from a
meteor.

To specify the normalizing factor cn in (2), we employ the definition of the
shower flux density Θm0 . This quantity expresses the number of meteors cross-
ing a unit surface of the echo plane per time unit having masses in excess of
mo. Mass mo is an optional constant that will be discussed in detail in Subsec-
tion 3.6. The definition together with the law (2) leads to the following relation
connecting the shower flux density Θm0 with the normalizing factor cn:

Θm0 =

+∞∫
m0

d3N

dS dt
dm = cn

+∞∫
m0

m−s dm =
cn

s− 1
m1−s

0 . (3)

Elimination cn between equations (2) and (3) yields the important generalized
mass distribution power law

d3N = (s− 1) Θm0 ms−1
0 m−s dm dS dt. (4)

Obviously, m ≥ m0 has to be valid. Since the mass of a meteoroid decreases
during its passage through the Earth’s atmosphere and the rate of mass loss
is different for meteoroids of various sizes, shapes and chemical composition,
the mass m in (4) should represent m∞ of the meteoroid, i. e., its mass before
entering the Earth’s atmosphere. So, we rewrite (4) as

d3N = (s− 1) Θm0 ms−1
0 m−s

∞ dm∞ dS dt. (5)

In the above equation d3N stands for an incremental rate with respect to mass.
Since it is better to deal with cumulative rates due to greater numbers in prac-
tice, our theoretical range distribution model is based on the corresponding
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cumulative quantity. To answer this purpose, we carry out the integration in (5)
with respect to mass from a certain value of m∞ to +∞. We obtain

d2Nc = Θm0 (m0/m∞)s−1
dS dt. (6)

Here d2Nc is the cumulative number of meteors having masses m∞ in excess of
mo registered during the time element dt and within the element of the echo
plane dS. Equation (6) is the principal formula in the differential form. We get
its integral form when integrating with respect to time t and collecting area Scol:

Nc =Θm0

t2∫
t1

dt

∫
Scol

(mo/m∞)(s−1)
dS =Θm0

t2∫
t1

dt

R2∫
R1

dRR

ϑ2(R)∫
ϑ1(R)

(
m1/3

o /m1/3
∞

)3(s−1)

dϑ. (7)

This is the fundamental formula of the RaDiM in the integral form. Since it is
not possible to observe the quantity m∞ in a direct way we have to transform (7)
to include only a suitable measurable quantity. This will be carried out in the
next subsection.

3.2. The used radar quantity

Now we need to pay attention to the replacement of m∞ in the fundamental
formula (7) by a directly observable quantity with a clear relation to the mass
of a meteoroid. Generally, there are two ways how to make use of the data we
get from the observations. We can choose either the duration of an observed
radar echo or its amplitude. Both quantities are generally connected with the
electron line density αe at the specular point on a meteor trail and, therefore,
with mass m∞ (e. g. McKinley, 1961). Unfortunately, we are not able to make
use of the amplitudes of registered echoes due to the fact that the observations
are only single-station ones without an interferometer. As a consequence, it is
impossible to determine the position of the registered echo within the antenna
pattern and make the relevant correction of its amplitude. The second possibility
is to work with durations. They are handy because their observed values are not
influenced by their positions within the antenna pattern. Now we need to make
a choice between the duration of underdense and overdense echoes.

The decay of the electron volume number density that has a strong influ-
ence upon an echo duration can be a result mainly of three effects: ambipolar
diffusion, recombination and attachment of free electrons to neutral particles.
We take into account only ambipolar diffusion. The reason for the neglect of
the remaining two effects is examined in Subsection 3.3. Let us now consider
only ambipolar diffusion. In this case the duration TU of the underdense echo
that is defined as the time constant of the exponential drop of the amplitude of
received signal is given by (e. g. Bronshten, 1983):

TU =
λ2

16 π2 D(h)
. (8)
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Here λ is the wavelength of the electromagnetic wave the radar transmits (8 m)
and D(h) stands for the ambipolar diffusion coefficient which is height depen-
dent. Equation (8) expresses one important fact: TU is not related to any physical
characteristics of meteors at all. Thus, the only usable observed quantity for our
purpose is duration TD of the overdense echo. The connection between TD, the
electron line density (the number of electrons created per unit path length), αe,
and the initial radius of a meteor trail at the reflecting point at the height h (in
the case of the ambipolar diffusion process) is given by (e. g., Bronshten, 1983):

TD =
(

λ

2π

)2

re
αe(h)
D(h)

− r2
o

4D(h)
, (9)

where re is the classical radius of electron (re = 2.81× 10−15m), and ro denotes
the initial radius of a meteor trail. It is obvious from (9) that the quantity TD

is very suitable for our purpose. We derive the desired connection between TD

and m∞ in Subsection 3.5 by means of (9).
The bottom limit of the duration we take is 0.4 s. This option follows from

equation (8). The slowest shower we deal with is the Giacobinid one. Its preat-
mospheric speed is about 23 km s−1 (Lovell, 1954) and the corresponding char-
acteristic height of its radar meteors is 87 km (McKinley, 1961). The diffusion
coefficient at this height (computed according to CIRA (1972) for October and
relation (15)) has the value of 1.57 m2 s−1. Thus, the underdense duration com-
puted from (8) is approximately 0.25 s. The remaining examined showers are
faster and consequently their characteristic radar heights are greater. Since the
value of the ambipolar diffusion coefficient increases with increasing height, the
value of 0.25 s is the maximum of (8). To be on the safe side and avoid the
transient type of radar echoes the bottom limit of the duration of the overdense
echoes we accept is 0.4 s.

Since we use cumulative rates the upper limit of echo duration should be
infinity according to (7). However, in practice there is some maximum value
in the observed data. This value varies from one examined shower to another
and usually does not exceed approximately one minute. This fact also enables
us to avoid dealing with the effect of attachment. For example, no activity
of ζ Perseids and β Taurids in the echo duration category exceeding 10 s was
observed, the corresponding limit for autumn Taurids was 5 s (Pecina et al.,
2005). There are some exceptions, e. g., Leonids (Pecina and Pecinová, 2004)
when we have recorded echoes with durations of order of minutes. But it is an
exceptional case and a contribution to a whole cumulative rates are almost on
the zero level for those echoes. To sum up, the upper limit of the duration
we work with is determined for each individual meteor shower and year of its
occurrence.

Furthermore, it should be emphasized that the RaDiM is able to work with
arbitrary limits of duration (mass). On the other hand, the greater interval of
duration the greater number of observed echoes and, consequently, the corre-
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sponding range distribution curve is defined better. This is our main reason for
using the cumulative rates.

3.3. Dissipation of meteor trails

Electrons recombine with positive ions to form neutral molecules or atoms. This
effect can be expected to contribute to an eventual dissipation of the meteor trail.
According to Bronshten (1983), the most effective process of recombination, the
dissociative one, has the electron recombination coefficient ae ' (2÷4.5)×10−13

m3 s−1. As a consequence of this small value, recombination can hardly be a
significant factor in comparison with ambipolar diffusion. Hence, in order that
recombination could play significant role within the observed meteor trains, ae

should be greater more than 104 times in comparison with the previous value.
Some electrons may attach themselves to neutral molecules to create neg-

ative ions. This process depends on the constant be of attachment and on the
concentration n of molecules to which electrons attach. In the past molecular
oxygen was suspected as one of the most probable molecules involved in the
creation of negative ions (McKinley, 1961). The coefficient of attachment is not
well determined but one can find in literature (Bronshten, 1983) that its value
is small at meteoric heights around 100 km (the heights in question). Thus, the
attachment process to oxygen does not have noticeable influence upon the decay
of number density of electrons. It follows that attachment may become relevant
at heights bellow 75 km. On the other hand, Bibarsov (1972) proposed that the
attachment of electrons to neutral particles of meteor origin, i.e., particles ab-
lated from a meteoroid’s surface, happens rather than to oxygen. His view was
not accepted by the scientific community. Recently, ozone has been taken into
account (e. g., Jones et al., 1990). However, because of be ' 10−18 m3 s−1 in
this case (Baggaley, 1972) and concentration of ozone molecules n ' 1015 m−3

(at its maximum at 85 km), even ozone cannot play a significant role in our
observations. This can easily be seen from the following relation connecting the
duration TD influenced only by ambipolar diffusion and the observed duration T
that can be affected by both processes. The function TD(T ) has the form (e. g.,
Bronshten, 1983):

TD =
(

T +
r2
0

4D

)
exp(be n T )− r2

0

4D
. (10)

The term exp(be n T ) ' 1 for ozone and we can simplify this to TD ' T and use
directly observed duration T in (9) instead of TD.

To conclude, both effects can be expected to contribute to the eventual dissi-
pation of the meteor ionization within the examined trails but the rates at which
they operate revealed that they are not significant in comparison with ambipolar
diffusion. Moreover, both phenomena should occur at rather lower heights while
our echoes originate at greater ones. Thus we consider only ambipolar diffusion
in the RaDiM.
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3.4. Assumptions

We infer the explicit functional dependence of m∞ on the duration TD from the
physical theory of meteors under several assumptions.

(i) We neglect deceleration of meteoroids. The fact that deceleration of radar
echoes of the type the RaDiM uses can be neglected is based on literature
(e. g., Kashcheev et al., 1967; Voloshchuk et al., 1989).

(ii) Meteoroids behave in a more complicated way during their passage through
the Earth’s atmosphere than the classical single-body theory predicts. This
proved to be true in many cases in the past (e. g., Campbell-Brown and
Koschny, 2004) and also in our investigation. At first, we tried to develop
a simple model of the range distribution when taking into account the as-
sumption that a meteoroid, originally of a spherical shape, does not change
its shape during its passage through the Earth’s atmosphere. That model of
first approximation was applied to the data of two daytime showers of the
Taurid complex (Pecinová and Pecina, 2005). In that case it worked fairly
well but there was still some discrepancy between the observed and theoret-
ically gained range distributions. So, we were obliged to improve our model.
In accordance with Levin (1956) we consider the law governing a variability
of the cross-section of a meteoroid during ablation. We define this law in
terms of Levin’s parameter µ (also self-similarity parameter)

S = S∞ (m/m∞)µ
. (11)

Here, S is the instantaneous cross-section of a meteoroid and m its cor-
responding mass. Symbol ∞ denotes its preatmospheric value. Obviously,
if the ablating body remains self-similar (the classical single-body theory),
µ = 2/3 is valid. Apparently, the physical meaning has only the affirmative
values of µ so that we take it from the interval <0,+∞). The usage of µ im-
proves the fitting of theoretical range distribution to the observed one as is
treated in more detail in Paper III. Further, we consider the preatmospheric
shape of a meteoroid to be a sphere. Thus, we connect S∞ with m∞ and the
bulk density of a meteoroid δ by the relation

S∞ = A (m∞/δ)2/3
. (12)

The symbol A stands for a numerical constant. In this case: A=π(3/(4π))2/3

.= 1.21.

(iii) We use an exponential dependence of the air density % on the height h in
the widely-used form (e. g., Pecina and Ceplecha, 1983)

%(h) = %o exp (−h/H). (13)
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The constants ρo and H result from the least-square fit of this dependence to
the atmosphere CIRA (1972) within the meteor heights interval 80-120 km.
It is performed separately for each relevant month in which the examined
meteor shower occurs.

(iv) The term (9) includes the initial radius ro. We use the following model of ro

(Baggaley, 1970):

ro = roo (ρk/ρ(h))f (v(h)/vk)g
. (14)

The constants entering (14) are:

• roo = 1.5 m,

• ρk = 0.5306 · 10−6 kg m−3 (at 100 km),

• vk = 40 km s−1,

• f = 0.45,

• g = 0.57.

The model (14) points out that the initial radius depends on height through
the density of air and the velocity of meteoroids.

The term r2
o/4D(h) in (9) depends also on the ambipolar diffusion coeffi-

cient D. In further consideration we make use of the relation

D % = Dr %r, (15)

where Dr and %r mean the values at a reference height. We accept the value
Dr = 4.2 m2 s−1 valid for height of 93 km in our computations (Belkovich,
1971). By substituting (15) into (14) we gradually get:

r2
o

4D(h)
=

r2
oo

4Drρr
ρ(h)

(
ρk

ρ

)2f(
v

vk

)2g

= c1 ρ1−2f v2g, (16)

where c1 =

[
roo %f

k

2 vg
k

]2
1

Dr %r
remains constant. Consequently (9) takes the

form

TD =
(

λ

2π

)2

re
αe %

Dr%r
− c1 ρ1−2f v2g

∞ . (17)

Since TD � c1 ρ(h)1−2f v2g
∞ holds true for Baggaley’s values of constants this

term does not influence the computed values noticeably. In spite of this we
do not neglect it in our computations to be able to take it into consideration
when some other ro-model is accepted.
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3.5. Connection between m∞ and TD

The aim of this subsection is to derive the quantity m∞ as a function of the
observed duration TD of the overdense echo under the above mentioned assump-
tions. For this purpose we need to find the expression of αe as a function of m∞
and then substitute for it into (9). This is performed in three steps.

Firstly, we proceed from the mass-loss equation (or the ablation one) de-
scribing the process of ablation. Ablation is defined as any removal of meteoroid
mass via its passage through the Earth’s atmosphere in the form of gas, droplets
or solid fragments. It takes the form (e. g., Bronshten, 1983)

dm

dt
= − Λ

2Q
S%v3. (18)

Here Λ is called a heat-transfer coefficient. Since the energy used on ablation
cannot evidently exceed the total kinetic energy of the oncoming stream of
molecules, this dimensionless coefficient is less than or equal to unity. Apart
from the energy used for heating and ablation of the meteoroid mass dm, some
part of the energy of the impinging molecules is consumed by heating up of
the meteoroid itself, another part is converted into radiation and ionization of
atoms and molecules of both the meteoroid and the air and also a significant
portion of energy is dissipated by reflected air molecules and vapor molecules
and atoms. Introducing a very important parameter σ, known as the ablation
parameter, by the relation

σ =
Λ

2QΓ
(
[σ] = s2 km−2

)
, (19)

we can rewrite equation (18) into the form

dm

dt
= −σΓS%v3. (20)

The coefficient Γ is a drag coefficient. Because we take the atmospheric profile
in the form of (13), this also implies

dh = − (H/%) d %. (21)

To proceed further, we use the following relationship defining a geometric de-
pendence of the height of the meteoroid flight h on time t (e. g., Bronshten,
1983):

dh

dt
= −v cos zR, (22)

where zR is the zenith distance of a shower radiant. We usually suppose that
cos zR is independent of height, h, because the variability of zR can be proved
to be significant only in case of a very long bright meteor the trajectory of
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which extends over a large part of the Earth’s surface. This is not the case of
radar echoes registered by means of the Ondřejov meteor radar. Moreover, this
relation does not take into account the curvature of the Earth’s surface, which
is also insignificant from the point of view of the data we use. The length of
the meteoroid flight l connects with time t by the relation dl = v dt. Combining
equations (21) and (22) we get the important relation:

dt = (H/% v cos zR) d%. (23)

At this point there is necessary to modify the mass-loss equation due to Levin’s
proposition. Let us now substitute relations (11) and (23) into ablation equa-
tion (20). After making necessary adjustments with regard to (12) and the non-
deceleration assumption we arrive at the expression(

m

m∞

)−µ

d

(
m

m∞

)
= − HKσv2

∞

m
1/3
∞ cos zR

d%. (24)

Here we make use of the definition of the shape-density coefficient K = A Γ/δ2/3.
Subsequent integration in (24) provides us with

m = m∞

{
1− (1− µ)

HKσv2
∞

m
1/3
∞ cos zR

%

} 1
1−µ

. (25)

When we substitute this result into (20), we obtain

dm

dt
= −Kσm2/3

∞ v3
∞ %

{
1− (1− µ)

HKσv2
∞

m
1/3
∞ cos zR

%

} µ
1−µ

. (26)

Secondly, we turn out our attention to meteor ionization. The fact that
meteoroids during their passage through the Earth’s atmosphere leave an ionized
conducting path provides us with possibility of studying them by means of
the radar. The formation of an ion-electron trail is a consequence of inelastic
collisions between the evaporating atoms of a meteoroid and air molecules and
atoms. The trail is supposed to be quasi-neutral as a whole. One of the most
important feature of the trail we work with is the electron line density αe that
appears in the ionization equation (e. g., Bronshten, 1983)

αe = − β

µa v

(
dm

dt

)
, (27)

where the symbol µa stands for the average mass of a meteoroid atom. We adopt
the value µa = 40×µH (µH = 0.16735×10−26 kg is the mass of hydrogen atom)
after Ceplecha et al. (1998). The symbol β is called the ionization coefficient or
the ionization probability (dimensionless quantity) and equals to an average
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number of free electrons released during collisions of one evaporated meteor
atom with other particles. The notation of the equation expresses the fact that
ionization comes from meteor atoms but not from the atmospheric particles.
The quantity β depends on meteor velocity in a way that has not been known
definitely yet. We get the desired dependence of the electron line density αe on
height h, the ionization curve, by substituting dm/dt from the modified ablation
equation (26) into (27) with regard to the first assumption. This yields

αe =
Kσm

2/3
∞ v2

∞
µa

β %(h)

{
1−(1−µ)

HKσv2
∞

m
1/3
∞ cos zR

%(h)

} µ
1−µ

. (28)

This relation expresses a well-known fact that αe depends not only on height h
via the air density % but also on parameters σ, K, β, µ and the initial val-
ues m∞, v∞.

Thirdly, we substitute from (28) into (17) to obtain the desired relationship
connecting observed TD with physical quantities of meteoroids:

(TD + c1ρ(h)1−2fv2g
∞ ) x2 = c a %(h)2

{
1− (1− µ)

b

cos zR(t)
%(h) x

} µ
1−µ

(29)

In this transcendental equation for x the symbols x, a, b, c designate:

x = m−1/3
∞ , (30)

a = K σ v2
∞ β(v∞), (31)

b = K σ v2
∞H, (32)

c =
(

λ

2π

)2
re

µa Dr ρr
= const . (33)

The constant c depends on the used equipment only via λ and zR is the zenith
distance of a shower radiant. Furthermore, it is important to note that the
parameters a and b depend namely on the physical properties of meteoroids,
that is, on the shape-density coefficient K, the ablation parameter σ, and on the
ionization coefficient β. We suppose both quantities a and b to be the same for
all members of a particular meteor shower. It means that all members belonging
to the same meteor shower have the same physical properties. By means of (31),
(32) and (33) we introduce the following useful relations:

K · σ =
b

H v2
∞

, (34)

β(v∞) = H
a

b
. (35)

Unlike quantities a and b, these relations have the evident physical meaning.
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3.6. Optional constant mo

The quantity mo that is included in (7) does not depend on the position of a trail
reflecting point within the collecting area and is, therefore, constant with respect
to the integration. We look for the minimum mass related to the bottom limit
of the overdense duration, 0.4 s, and accept its value of 10−5 kg. It is estimated
in the following way.

The highest electron density occurs at the maximum of the ionization curve.
Obviously, the higher the mass of a meteoroid the higher the electron line density
and vice versa. Moreover, the reflection at other point than at that of maximum
ionization requires a higher value of mass to yield the same signal strength.
So, in order to estimate the value of the minimum mass mo we need to express
a relation between the maximum electron line density and the corresponding
mass. Therefore, we calculate the derivative of (28) with respect to % and put
the result zero. The result reads

%max =
m

1/3
∞ cos zR

H K σ v2
∞

. (36)

The height hmax at the point of the maximum ionization is

hmax = H ln

(
m

1/3
∞ cos zR

H K σ v2
∞

)
. (37)

It is interesting to note that the %max and consequently hmax do not depend on
the self-similarity coefficient µ. The electron line density αmax at the point in
question is

αmax =
β(v∞) m∞ cos zR

H µa
µ

µ
1−µ . (38)

Due to the fact that the electron line density of overdense trail relates to the
duration, TD, via (9) we get:

m∞ =
H µa

β(v∞) cos zR

(
2π

λ

)2

TD
D(h)
re

µ
µ

1−µ . (39)

The term r2
o/4D was neglected for the reason described in Subsection 3.4. Now

we can estimate mo. We look for the minimum mass that relates to the duration
of 0.4 s. As we explicated in Subsection 3.3, this duration corresponds to the
height level of 87 km and D(87km) = 1.57 m2 s−1. For our estimate we need
to accept some model of the ionization coefficient β. We take a semiempirical
model of β(v∞) by Kashcheev et al. (1967) (being probably most frequently in
use) that serves us also for the initial estimation of this quantity during our
computations:

β = βkvn, (40)
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The constants are: βk = 0.12649 × 10−6 and n = 3.5 ([v] =km s−1). The ion-
ization coefficient which corresponds to the Giacobinids: β = 0.00738. Further,
the minimum value of (39) occurs when simultaneously the quantity µ

µ
1−µ takes

the minimum value and the inverse of cos zR takes the maximum value. The
function f(µ) = µ

µ
1−µ is monotonously increasing within the interval <0,+∞)

so that its minimum: f(0) = 1. The maximum value of cos zR equals 1. The
values of the other constants are: H = 5.409 km (computed in the case of
Geminids by means of CIRA (1972), λ = 8 m, re = 2.81 × 10−15 m, µa =
40 × 0.16735 × 10−26 kg. Hence, all of this yields: mo

.= 0.66 × 10−5 kg. This
value holds true at the point of maximum ionization. At other points which
do not coincide with the maximum one mass must be even higher. Since the
reflection exactly at the point of maximum ionization is rather exceptional and
because the possible values of f(µ) in practice are greater than 1 we accept the
limiting mass to be mo ' 1×10−5 kg without introducing any substantial error
into our considerations.

4. Computation

Equation (7) expresses the fact that we observe meteors crossing the collecting
area of the echo plane Scol during the time interval (t2, t2). In other words, we
integrate over the time interval during which the observation was carried out
and over the domain of the echo plane from which the radar is able to register
radar echoes. The limits of the integration are the following:

1. t1, t2 are time limits of observational interval (optional),

2. R1, R2 are limits of particular range interval (optional),

3. ϑ1, ϑ2 are bounds of angular interval within the collecting area Scol depend-
ing on the range from radar and on the radiant position.

Thus, after choosing the time and the range limits we need to determine the
angular limits. The angles can be computed with the assistance of the radar
equation valid for overdense echoes (e. g., Kaiser, 1961):

PR = PT
λ3

54π3R3

√
re G2(ϑ)

√
αe(h). (41)

The radar equation connects the received power PR and transmitted one PT ,
(under the assumption we have the common antenna for transmission and re-
ceiving) after the reflection on the overdense trails. G(ϑ) is the antenna gain and
R is the range of the specular point on the trail from the radar. The condition
for the computation of the angular limits follows from the fact that received
power PR has to be greater than or equal to limiting power Pmin. This fact
together with equation (17) leads to

PT

Pmin

λ2 G2(ϑ)
27π2

√
Drρr√
% R3

√
TD + c1 v2g

∞ %(h)1−2f >= 1. (42)
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In the case of the Ondřejov meteor radar Pmin = 2 × 10−13 W. We take the
functional dependence of the gain G on the angle ϑ inside the collecting area
of the echo plane from the antenna pattern by means of the transformation
relations. For more details, see Pecina (1982). The relation between height h, ϑ
and R is given by the cosine theorem of plane trigonometry

h =
√

R2
E + R2 + 2 RE R sin zR cos ϑ−RE . (43)

The symbol RE stands for the Earth’s radius. The boundaries ϑ1, ϑ2 are limiting
values of the region inside which PR ≥ Pmin. Such limits surely exist since G(ϑ) is
maximum for ϑm corresponding to the direction of the antenna pattern vertical
plane. When even at ϑ = ϑm (42) is not valid no signal can be detected. On the
other hand G(±π/2) = 0 because these limits correspond to the observational
line coinciding with local horizon. Since the dependence of the left hand side
of (42) on ϑ is monotonous within both the interval ϑ ∈<−π/2, ϑm> and ϑ ∈<
ϑm,+π/2> with the maximum reached just at ϑ = ϑm, the existence of both
angular limits is justified.

The numerical procedure applied to perform the integration in (7) is the
following. The time interval < t1, t2 > was divided into a set of subintervals
long 1 hour at the most. The results got on all subintervals were added together
to receive the final result. The integration within each subinterval was per-
formed using the Gauss quadrature formula (e. g., Kopal, 1955) integrating the
polynomial of the 7th order exactly. The integration with respect to range was
carried out separately on each interval <R1, R2> and all results were summed
together to provide the result. On each subinterval <R1, R2> the Gauss formula
integrating the polynomial of 3rd order exactly was employed. The integration
with respect to ϑ within the interval <ϑ1, ϑ2> was performed by dividing this
interval into a number of subintervals being 1◦ long and then adding all partial
results to get the final result. The integration within each subinterval was done
by means of the Gauss formula for the polynomial of 3rd order. We get the
parameters Θm0 , s, a (K·σ, β), b (K·σ) and µ from the least-square fit of the the-
oretical rates computed according to our principal formula (7) to an observed
range distribution as described in Appendix A.

The iterational method of computation of the parameters is the following.
Primarily, we define normalized rates of observed rates within a particular range
group as the observed rate divided by the rate at the maximum of the observed
range distribution. Then these rates do not depend on Θm0 as it can easily be
recognized from (7). They are functions of s, K·σ, µ, β. Numerical computations
revealed that the normalized rates depend mainly on s and K · σ. They depend
in a somewhat weaker way on µ and β. Therefore, the process of computation is
divided into several substeps. During the first one only s and K·σ are computed
while the remaining ones are kept constant. The starting value of the mass
distribution index s we take to be around the value computed from the classical
log N vs. log TD fit. The starting value of K·σ is 0.01 corresponding to K = 1
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Figure 2. The left hand side picture shows the theoretical range distribution computed

for Geminids, as a function of time. All four curves are marked with relevant limits

of time interval t1 and t2 in LT and were computed for mass mo = 10−5 kg, v∞ = 36

km s−1, K ·σ = 0.01 s2 km−2, s = 1.5, µ = 2/3, β = 0.100, Dr = 4.2m2 s (height of

93 km), H = 5.409 km and %o = 56.803 kg m−3. We present on the right hand side

picture just for comparison the time course of the elevation of the Geminid radiant.

and σ = 0.01. The starting value of µ is set to 2/3 and the corresponding value
of β is set to the value of this quantity following from the formula of Kashcheev
et al. (1967). After getting the s and K·σ values the next parameter from the
above mentioned set is added and so on. Eventually, all these parameters are
evaluated. In the second (and last) stage the Θm0 is calculated where the original
(not normalized) rates are used.

The way how a theoretical rate of meteors depends on quantities in question
will be visualized in one of the relevant articles dealing with the particular pa-
rameter. In this work we focus only on the time and velocity dependence. The
time dependence of the theoretical range distribution on time is realized via
cos zR. To visualize this dependence, a few theoretical range distributions valid
for 1 hour time intervals were computed for various radiant positions. These
distributions in the case of the Geminid radiant are depicted in Fig. 2. The
Geminid radiant culminates around 2.5h LT. Obviously, the higher the radiant
elevation the greater rates of echoes. Further, the maximum of the range dis-
tribution moves to the more distant ranges as the radiant elevation increases.
The velocity dependence of RaDiM is not so clearly pronounced because a lot
of parameters that enter it are dependent on velocity (e. g. the ionization pa-
rameter β, the initial radius ro). Fig. 3 demonstrates the changes of the range
distribution course as parameter v changes. Obviously, in the case of a higher
velocity the maximum of the relevant range distribution lies in more distant
ranges than in the case of slower meteor showers. This fact corresponds with
the course of the ionization curve as it is shown in Fig. 4. This shows that the
smaller velocity is the deeper in the Earth’s atmosphere the ionization curves
begin and cease. Also, the greater value of v the greater value of αmax at the
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Figure 3. The theoretical range distribution as a function of atmospheric velocity, v,

of meteor shower. The curve labelled by (1) corresponds to v = 36 km s−1 while the

one with (2) corresponds to v = 72 km s−1. The computations were performed for the

radiant of the Geminids.
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Figure 4. The theoretical ionization curve as a function of the atmospheric velocity v

of meteor shower. Both curves that are marked with the corresponding value of v were

computed for the radiant of Geminids between 1 and 2 UT, on the 13th of December,

in 2000.
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point of maximum ionization. The coordinates of shower radiants and velocities
can be found either in Lovell (1954) or in Cook (1973).

5. Input data

As it was mentioned above, the Ondřejov meteor radar has been under operation
since 1958. The unique long-term series of data have been managed to accumu-
late that are almost uninterrupted. The scientific research has mainly concen-
trated on four meteor showers: the Quadrantids, the Perseids, the Leonids and
the Geminids. We tried to use the RaDiM for every year of each series. Besides,
we also applied our method to two daytime showers that belong to the Taurid
stream complex, ζ Perseids and β Taurids, observed in 2003 and to γ Draconid
(Giacobinid) meteor shower observed during its last increased activity in 1998.

Despite the huge volume of data it was not easy at all to choose a suitable
range distribution for computations belonging to a particular year. To make the
previous statement clearer we have to mention a few fact about data processing.
Because our observations are only single-station ones the method of observation
does not permit to determine the direction in which a meteoroid plunges into the
Earth’s atmosphere. Hence, we do not know whether it belongs to the observed
shower or to the background. To determine the shower activity we have to map
also the level of background activity. For that reason an activity before and
after shower activity has to be observed and after that we are able to construct
a shower activity curve when subtracting the background rates from the ones
gained during the shower activity period. This procedure was applied separately
within each range distribution subinterval the whole distribution consisted of.
When the background activity showed some unusual fluctuations we did not
take this background into account and did not construct the range distribution
at all. Moreover, badly determined background would influence the course of
the particular range distribution namely in short distances by some strange
fluctuations. The course of the range distribution of the sporadic meteors is of
a different nature, the bigger number of echoes appears in shortest distances
and their durations are rather short. When we looked for a range distribution
suitable for computations by our method we met a lot of obstacles. We can divide
them into two categories. The first one relates to technical problems such as
interruptions of observations due to power supply failure, a very high noise level,
human errors, problems with equipment and so on. Because of these technical
faults it was not possible to determine the shower activity level and consequently
to construct the relevant range distribution in some cases. Even in some years
the observations were not performed at all due to reparations of the radar,
its modernization or other technical problems. The second category includes
problems with echo rates. It is clear that we need rather stronger activity in
order the range distribution could be well-defined and the range distribution
method could be applied. But, there was very low or even zero shower activity
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in some years, e. g., Quadrantids 1963, Perseids 1972. Thus, a majority of range
distributions we have used were obtained during the maxima of shower activity
and during larger time intervals, e. g., 2 hours. Furthermore, it was mentioned
above that the Ondřejov meteor radar is able to observe unambiguously meteors
within the range interval from 100 km to 600 km with the blocking gap between
300 and 360 km. Rich experience with observations and data processing indicates
that an absolute majority of echoes occur within the interval <100, 300> km.
The shower rates in greater distances (< 360, 600 > km) from the radar vary
from one shower to another and do not exceed approximately 10%. This fact
relates to the radar equation for overdense echoes (41) because the strength of
signal decreases with the third power of distance from the radar. For that reason
we have confined ourselves to range limits from 100 to 300 km. Moreover, the
position of maximum of the range distribution changes with time due to time
dependence of the shower radiant position as we have shown in Fig. 2. In view of
this fact at some shower radiant position the maximum of the range distribution
overstepped the range limits <100, 300> km and was so badly determined that
we were not again able to get anything. It was the case of faster meteor showers
such as Leonids. But on the other hand, we have managed to construct two or
more range distributions in one year under favorite conditions.

To sum up, searching for well-defined range distributions of overdense echoes
was sometimes difficult. We proceeded as follows. Firstly, we usually divided
shower rates into 20-km-wide or 25-km-wide intervals from 100 km to 300 km
and then we interpolated them to get rates into 5-km-wide intervals with the
assistance of the interpolating procedure SINOD (single interpolation in one
dimension) published by Steffen (1990). The distributions obtained in this way
served as an input to our computations. Sorting into 20 or 25 km wide intervals
was a natural way how to make the observed data smoother. If the data were
sorted directly into 5-km-wide intervals, smoothing would be very problematic
in most cases due to fluctuations. Moreover, we eliminate in this way inaccuracy
of determination of ranges from the film records which is about 2-3 km. The
method of computations used was the Levenberg-Marquardt type (e. g., Press
et al., 1992). Its brief outline is given in Appendix A. The procedure of its
application was already described in Section 4.

The application of RaDiM to showers mentioned above and the relevant
results will be described in subsequent articles.

6. Conclusion

The model we have developed provides us with possibility of the estimation of
several important quantities connected with the structure of meteor showers
and physical features of their forming meteoroids. We have developed the the-
ory that makes use of the range distribution of shower meteors which have been
observed by the Ondřejov meteor radar. Our approach to the construction of
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this theory is based on a simple physical theory of meteors with neglect of the
deceleration of meteors contributing to the range distribution, which is justifi-
able. This distribution is a function of a few very important physical parameters
characterizing the meteoroids of a particular shower such as the shape-density
coefficient, K, and the ablation parameter, σ. Also the ionization coefficient, β,
considered as a function of meteoroid velocity, is one of quantities our theoretical
distribution depends on. The physical theory we have employed contains only
the product K · σ in the final equations. Since observed meteoroids of all show-
ers we have investigated are known to suffer from fragmentation during their
atmospheric flights we tried to include this effect in our theory as well. It proved
to be a rather tough proposition because to be able to consider the influence of
fragmentation on the ionization curve, we have to know at what point of the
curve the fragmentation takes place and its intensity. However, this is a piece
of information which is not at our disposal in radar observations. Moreover, to
obtain the ionization curve taking into account fragmentation we would have to
sum up the signals of the parent body as well as of all fragments which is not
possible to carry out in practice. On the other hand, it is clear that the influence
of fragmentation manifests itself as shorter both light and ionization curves with
their peaks being higher than the ones of nonfragmenting meteoroids. However,
a very similar effect can be seen from the theory bearing in mind Levin’s propo-
sition about the variation of the meteoroid cross section, which is characterized
by a new parameter, µ. Its classical value is 2/3. We have allowed it to vary
within a much broader interval, µ > 0. The value of µ 6= 2/3 can also allow for
different forms of ionization and light curves deviating from the one following
from the simple classical theory of meteors.

Our principal formula of the range distribution (7) gives the number of
meteors the radar in use can register within the collecting area of the echo
plane. The older approach of Pecina (1982) to the determination of the domain
of integration was based on the assumption that this is given by the point
of maximum ionization. We have developed a more sophisticated approach in
which we have abandoned that wrong assumption and our range distribution
model relies only on the radar equation of overdense echoes.

Our theory allows us to compute two parameters related to the structure
of meteor showers (and depending on solar longitude), Θm0 and s, and three
quantities, K·σ, µ and β, describing physical properties of meteoroids. We have
managed to apply our model to 127 range distributions of 7 different showers.
The relevant results will be published in subsequent articles.

At present there is no doubt that a majority of meteoroids are remnants
of cometary nuclei and/or asteroids. Thus the investigation of meteoroid orbits
and physical characteristics is important not only for meteor astronomy but
also for the understanding of physical feature of the meteoroids parent bodies.
The theory we have developed can be used to infer some physical parameters
of shower meteors based on the radar observations. We hope that the range
distribution model will become a handy tool enriching meteor astronomy.
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A. Mathematical method of getting parameters

We get the parameters Θm0 , s, a (K · σ, β), b (K · σ) and µ from the least-square fit of
the theoretical rates computed according to our principal formula (7) to an observed
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range distribution:

n∑
i=1

[NO
i −NC

i (Θm0 , s, a(K · σ, β), b(K · σ), µ)]2 =min. (A1)

Here NO
i is a number of meteors observed within a particular range interval and

NC
i (Θm0 , s, a(K ·σ, β), b(K ·σ)) is a computed theoretical number of echoes. The sym-

bol n stands for a total number of range intervals. Since NC
i depends on all parameters

except Θm0 in a nonlinear way we have to search for them iteratively. In computa-
tions like these, methods that take advantage of partial derivatives of NC

i with respect
to desired parameters proved to be useful. Let us give some indication of the itera-
tive process. If we have to solve a task to look for unknown parameters pj from the
condition

Q(pj) =

n∑
i=1

wi[yi − fi(pj)]
2 = min , (A2)

with wi as apriori weights, yi measured quantities and fi(pj) their mathematical model
that depend on pj in a nonlinear way we approximate the function Q(pj) by its Taylor
expansion around the parameters found in kth iteration:

Q(pk+1
j ) = Q(pk

j ) +

m∑
α=1

∂Q

∂pα
(pk

j ) (pk+1
α − pk

α) (A3)

+
1

2

m∑
α,β=1

∂2Q

∂pα∂pβ
(pk

j ) (pk+1
α − pk

α)(pk+1
β − pk

β),

where m is a number of parameters the model depends on. At the minimum of (A3)
the condition

∂Q/∂pk+1
i = 0

should be satisfied. After taking the derivative of (A3) we get:

∂Q

∂pi
(pk

j ) +

m∑
α=1

∂2Q

∂pi∂pα
(pk

j ) (pk+1
α − pk

α) = 0. (A4)

It is obvious that ∂2Q/∂pi∂pα are elements of the square matrix having dimension
m × m. After multiplication of (A4) by a matrix inverse to ∂2Q/∂pi∂pα we get the
iterative recipe of the Gauss-Newton method (e. g. Meloun and Militký, 2005):

pk+1
γ = pk

γ −
m∑

δ=1

(
∂2Q

∂pγ∂pδ

)−1
∂Q

∂pδ
, γ = 1, . . . , m. (A5)

From (A2) it follows that

∂Q

∂pj
= −2

n∑
i=1

wi [yi − fi(pl)]
∂fi

∂pj
, (A6)
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and

∂2Q

∂pj∂pm
= 2

n∑
i=1

wi
∂fi

∂pj

∂fi

∂pm
− 2

n∑
i=1

wi [yi − fi(pl)]
∂2fi

∂pj∂pm

≈ 2

n∑
i=1

wi
∂fi

∂pj

∂fi

∂pm
.

The second term in the middle part of the last but one line is usually neglected because
it causes the worse convergence behaviour during computations namely when the set
of parameters is far from their values giving minimum of (A2). In order to simplify
further expressions we define the vectors Pj , Gk and Ml together with the matrix Sjk

by putting

Pj =

n∑
i=1

wi [yi − fi]
∂fi

∂pj
, Sjk =

n∑
i=1

wi
∂fi

∂pj

∂fi

∂pk
, (A7)

Gk =

m∑
α=1

S−1
kα Pα, Ml =

m∑
β=1

Slβ δlβ Gβ , (A8)

where δij stands for the Kronecker symbol. When comparing the definition of Pj and
Sjk with partial derivatives of Q we can see that

∂Q

∂pα
= −2 Pα,

∂2Q

∂pα∂pβ
= 2 Sαβ , =⇒

(
∂2Q

∂pα∂pβ

)−1

=
1

2
S−1

αβ .

Inserting for these derivatives into (A5) we already get the recipe for computation of
pj :

pk+1
j = pk

j + Gj . (A9)

This is an explicit expression for the Gauss-Newton method.
The good initial estimate of searched parameters is necessary in order the Gauss-

Newton method could work. If this is not the case the troubles when inverting the
matrix Aγδ ≡ ∂2Q/∂pγ∂pδ are to be expected. To overcome these troubles Levenberg
and Marquardt (e. g. Press et al., 1992) proposed to replace the matrix Aγδ by another
matrix Aγδ + λLM diagAγδ, where diagAγδ is a diagonal matrix with elements coin-
ciding with those of original Aγδ and λLM is a parameter the authors recommend to
choose in a rather artificial way. The sense of this proposition lies in the fact that the
addition allows performing the inversion of the new matrix and the parameter λLM

controls the length of an iteration step. The larger this parameter the shorter the step.
This idea inspired us in further extension of this method. The length of an iteration
step should depend on a quantitative expression of the fitting process. This is given
by the magnitude of Q according to (A2). The greater Q the shorter should be the
iteration length. This leads to a proposition to replace Aγδ by Aγδ + λP Q diagAγδ.
Inserting this matrix into (A5) and considering (A2) a function of pj represented by
the right hand side of (A5) the one-dimensional minimization of Q with respect to λP

yields the desired expression for λP . Then the corresponding formula of a modified
Levenberg-Marquardt method we have derived and made use can be written as

pk+1
j =pk

j +

m∑
k=1

(
Sjk+

∑m

α=1
MαGα∑m

β,γ=1
S−1

βγ Mβ Mγ

diag Sjk

)−1

Pk. (A10)
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This approach is especially suitable when the normalized quantities in (A2) are used
since the value of Q at minimum should be less than unity. We have used this recipe
in all our computations. These begin with a chosen initial estimate. The subsequent
values of parameters are computed using (A10). The computations are carried out
until the subsequent sets of parameters differ by more than the prescribed constant.

To complete this chapter we have to add explicit expressions for NC
i from (A1).

This is given by (7). When substituting there for m
−1/3
∞ ≡ x we obtain the desired

expression

NC
i = Θm0

∫ t2

t1

dt

∫
Scol

(m
1/3
0 x)3(s−1)dS. (A11)

The derivative of NC
i with respect to Θm0 is also easy to write:

∂NC
i

∂ Θm0

=

∫ t2

t1

dt

∫
Scol

(m
1/3
0 x)3(s−1)dS. (A12)

The derivative with respect to s can easily be performed, too. The result reads

∂NC
i

∂ s
= 3Θm0

∫ t2

t1

dt

∫
Scol

(m
1/3
0 x)3(s−1) ln (m

1/3
0 x) dS. (A13)

The derivatives with respect to remaining parameters can be written as

∂NC
i

∂ p
= 3(s− 1)

∫ t2

t1

dt

∫
Scol

(m
1/3
0 x)3(s−1) 1

x

∂x

∂p
dS, (A14)

where p stands for one of the parameters a, b, µ. The particular derivatives can be
evaluated from (29) when defining an auxiliary quantity ξ = b % / cos zR:

1

x

∂x

∂a
=

1

2a

1− (1− µ) ξ x

1− (1− 3µ/2) ξ x

1

x

∂x

∂b
= −1

b

µ ξ x

1− (1− 3µ/2) ξ x

1

x

∂x

∂µ
=

1

2(1− µ)2
µ (1− µ) ξ x

1− (1− 3µ/2) ξ x
+

+
1

2(1− µ)2
{1− (1− µ) ξ x} ln {1− (1− µ) ξ x}

1− (1− 3µ/2) ξ x


