
Contrib. Astron. Obs. Skalnaté Pleso 38, 33 – 46, (2008)
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Abstract. The distant comet reservoir, the Oort cloud, is perturbed by the
Galactic tide, nearly passing stars, and giant interstellar molecular clouds. The
perturbations by the latter are least frequent, but their amplitude is expected
to be highest. In this work, we suggest a simple model of a giant molecular
cloud and investigate the gravitational effect of such an object, when the Sun
with the Oort cloud goes across it. More specifically, we assume a molecular
cloud consisting of a single or two spherical condensations, each with the density
profile described by a Gaussian-distribution function. We demonstrate that the
final perturbation effect of the molecular cloud on the comet reservoir is quite
small. The directional distribution of comet orbits remains almost intact. The
outer part of the comet cloud is eroded, but the erosion rate is not fatal for the
cloud: we found the maximum rate of 22% of the population. The erosion by the
two-condensation molecular cloud is lower than that by a single-condensation
molecular cloud, in the studied examples.
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1. Introduction

Comets are perturbed by several so-called outer perturbers in their distant reser-
voir, known as the Oort Cloud (OC). Besides the dominant perturbation by the
Galactic tide, comet trajectories are influenced by nearly passing alien stars and
interstellar matter concentrated into interstellar clouds.

Among the interstellar clouds, giant molecular clouds (GMCs) are the ob-
jects which can significantly perturb the comets in the OC. Probably due to
poor knowledge of their internal structure, this perturbation has not been of-
ten and comprehensively studied, and gravitational effects of the GMCs on the
comet orbits remain uncertain. Consequently, the perturbations by the GMCs
have used to be ignored in the dynamical studies of the OC.

A few works concerning the GMC perturbation, however, revealed that the
role of the GMCs in the OC-comet dynamics can be important. Bierman (1978)
found that the outer part of the OC can considerably be depleted due to colli-
sions with interstellar clouds. Napier & Staniucha (1982) and Clube & Napier
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(1984) attempted to prove, so far, that the outer region of the OC, beyond
≈ 10 000AU, was completely destroyed when the solar system encountered the
GMCs or their substructures. At the same time, a new population of comets
were captured from the GMCs (or, alternatively, comets were drawn to the
outer region from the inner comet cloud, below ≈ 10 000AU). They estimated
the number density of comets in the GMCs to be about 10−1 AU−3. Other au-
thors (e.g. Hut & Tremaine, 1985; Bailey, 1986), however, objected that Napier
& Staniucha and Clube & Napier overestimated or underestimated some param-
eters of a typical encounter of the solar system with a GMC and demonstrated
that the effect of GMCs on the OC is not so extreme.

Recently, Mazeeva (2004) considered three examples of GMCs consisting of
several (25 and 7) condensations as well as a GMC with a uniform density
distribution and demonstrated a large influence of GMCs on the OC-comet
dynamics, especially in the case of structured, multi-condensation GMCs.

In this paper, we describe the first results of an intended more comprehensive
study of the OC-comet dynamics during the passages of the solar system through
a GMC. Specifically, we analyse, here, a passage of a hypothetical OC through a
hypothetical GMC with an internal structure approximated (i) by a spherically
symmetric distribution of the matter with the radial density profile described
by a Gaussian-distribution function and (ii) by a cloud consisting of two such
spherical condensations.

2. The structure of a hypothetical spherical GMC

The GMCs are usually identified and their internal structure studied from CO
emission contours (e.g. Solomon et al., 1987), being characterized by the to-
tal mass and effective radius. The latter is the radius of a hypothetical sphere
containing all the mass of a given GMC. In the given context, a spherical dis-
tribution of the GMC density, ρ, is assumed and described by the relation

ρ(p) = ρ1

(
R1

p

)α

, (1)

where p is the cloud-centric distance, R1 is the maximum radius of the GMC,
and ρ1 is the density at R1. The standard value of the power-index α is 1. This
value is, however, not fixed. Solomon et al. (1987) demonstrated that the density
distribution law with α = 2 also fits well an observed photometric behavior.

The important feature of the density law (1) derived from the CO-emission
photometry is a truncation of the cloud at p = R1, i.e. ρ = 0 for p > R1. This
discontinuity makes a correct usage of the law in dynamical studies impossible.

An attempt to extrapolate the density law given by (1) beyond R1 leads
either to an extreme increase of the total mass of the GMC or, when artificially
reducing R1, to an extremely centrally concentrated GMC, i.e. a density behav-
ior, which contradicts the photometric observations. This is valid for both α = 1
and α = 2.
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In this work, we approximate the internal structure of a GMC by several
spherical condensations overlapping each other at their borders. The density
radial distribution of a given condensation is suggested to be described by an
error-Gaussian function. In other words, we regard the condensations as fluc-
tuations of the density of interstellar Galactic gas. So, we suggest the density
law

ρ(p) = ρc exp
(
− p2

2σ2

)
, (2)

where ρc is the density in the centre of the condensation and σ is its characteristic
dispersion.

The mass of the condensation, Mp, inside the sphere of radius p can be
calculated as

Mp = 4π

∫ p

0

p2ρ(p) dp = 4πρcp
3
∞∑

i=0

(−1)i

(2i + 3).i!

(
p√
2σ

)2i

. (3)

The density given by relation (2) approaches to zero at the cloud-centric dis-
tance p →∞. As the radius of a given GMC condensation, RO, we regard such
a cloud-centric distance, where the density falls to the value ≈ 10−22 kgm−3,
which is characteristic for a free interstellar Galactic environment. The mass
of the condensation, MO, is, subsequently, the mass inside the sphere of radius
RO, i.e. MO = Mp(RO). The mass MO practically represents the whole mass
of the condensation. One can demonstrate that MO > 0.999 Mp(p → ∞) for
all condensations considered in this work or whatever GMC condensations with
the reasonable characteristics fitting the observations.

3. The motion of the Sun through a GMC

Let us consider a GMC consisting of n spherical condensations, each having
the density profile described by (2). In the rectangular coordinate system with
the origin identical to the mass centre of all condensations, the centre of j-th
condensation is characterized by vector P j = (Uj , Vj ,Wj) and the position of
the Sun by vector R = (X, Y, Z).

We assume that all the condensations creating the considered GMC can
be regarded as stable, situated in exactly fixed positions, during a relatively
short period of the passage of the solar system throughout their system. If the
heliocentric radius vector of the centre of j-th condensation is denoted by pj ,
then

pj = P j −R. (4)

Denoting |pj | = pj , the acceleration vector of the Sun can be given as

R̈ = −k2
n∑

j=1

Mpj

p2
j

R− P j

pj
, (5)
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in the mass-centre coordinate system. We denoted the Gauss gravitational con-
stant by k and the mass of j-th condensation within the sphere of radius pj by
Mpj .

If we denote the sum in relation (3) by Sj , i.e.

Sj =
∞∑

i=0

(−1)i

(2i + 3).i!

(
pj√
2σj

)2i

, (6)

where σj is the density dispersion of j-th condensation, then equation (5) can
be rewritten as

R̈ = −4πk2
n∑

j=1

ρcjSj (R− P j) . (7)

The symbol ρcj stands for the central density of j-th condensation.
The integral of energy can be derived after the scalar multiplication of equa-

tion (7) with vector Ṙ and establishing the potential function

FU = −4πk2
n∑

j=1

ρcjSUj , (8)

where

SUj = 2σ2
j

∞∑
i=0

(−1)i

(2i + 2)(2i + 3)i!

(
pj√
2σj

)2i+2

. (9)

After some routine algebraic operations, the result can be obtained in the form

1
2

(
Ẋ2 + Ẏ 2 + Ż2

)
= FU + CU . (10)

The integration constant CU represents the total energy of the system, which is
conserved. This constant can be used as a test of the correctness of numerical
integration of solar motion through the GMCs.

Besides the integral of energy, we can relatively easily derive one more inte-
gral, which is related to the momentum conservation. Its general form for j-th
condensation is, however, very complicated. So, we here demonstrate the deriva-
tion of this integral only for a GMC consisting of two condensations. For n = 2,
equations (7) can be written as

Ẍ = −4πk2ρc1S1(X − U1)− 4πk2ρc2S2(X − U2), (11)

Ÿ = −4πk2ρc1S1(Y − V1)− 4πk2ρc2S2(Y − V2), (12)

Z̈ = −4πk2ρc1S1(Z −W1)− 4πk2ρc2S2(Z −W2). (13)
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When we multiply equation (11) by Y − V1, equation (12) by −(X − U1), and
add these equations, we obtain

Ẍ(Y − V1)− Ÿ (X − U1) = −4πk2ρc2S2 [(X − U2)(Y − V1)−
−(Y − V2)(X − U1)] . (14)

Similarly, multiplying equation (12) by Z −W1, equation (13) by −(Y − V1),
and adding them, we obtain

Ÿ (Z −W1)− Z̈(Y − V1) = −4πk2ρc2S2 [(Y − V2)(Z −W1)−
−(Z −W2)(Y − V1)] . (15)

Now, multiplying equation (14) by (Y − V2)(Z − W1) − (Z − W2)(Y − V1),
equation (15) by (Y − V2)(X − U1)− (X − U2)(Y − V1), and adding these two
equations provides[

Ẍ(Y − V1)− Ÿ (X − U1)
]
[(Y − V2)(Z −W1)− (Z −W2)(Y − V1)] =

=
[
Ÿ (Z −W1)− Z̈(Y − V1)

]
[(X − U2)(Y − V1)− (Y − V2)(X − U1)] . (16)

In further steps, we derive the analogous equations eliminating, in the first
step, the second terms on the right-hand sides of equations (11), (12), and (13).
So, let us multiply equation (11) by Y − V2, equation (12) by −(X − U2), and
add the two. The resultant equation is

Ẍ(Y − V2)− Ÿ (X − U2) = −4πk2ρc1S1 [(X − U1)(Y − V2)−
−(Y − V1)(X − U2)] . (17)

When equation (12) is multiplied by Z −W2, equation (13) by −(Y − V2), and
these equations are added, then

Ÿ (Z −W2)− Z̈(Y − V2) = −4πk2ρc1S1 [(Y − V1)(Z −W2)−
−(Z −W1)(Y − V2)] . (18)

Equation (17) can now be multiplied by (Y −V1)(Z−W2)− (Z−W1)(Y −V2),
equation (15) by (Y −V1)(X−U2)−(X−U1)(Y −V2), and the last two equations
can be added yielding[

Ẍ(Y − V2)− Ÿ (X − U2)
]
[(Y − V1)(Z −W2)− (Z −W1)(Y − V2)] =

=
[
Ÿ (Z −W2)− Z̈(Y − V2)

]
[(X − U1)(Y − V2)− (Y − V1)(X − U2)] . (19)

Equations (16) and (19) can be handled to[
Ẍ(Y − V1)− Ÿ (X − U1)

]
[(W2 −W1)Y + (V1 − V2)Z+

+(V2W1 − V1W2)] =
[
Ÿ (Z −W1)− Z̈(Y − V1)

]
[(V2 − V1)X + (U1 − U2)Y + (U2V1 − U1V2)] , (20)
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[
Ẍ(Y − V2)− Ÿ (X − U2)

]
[(W1 −W2)Y + (V2 − V1)Z+

+(V1W2 − V2W1)] =
[
Ÿ (Z −W2)− Z̈(Y − V2)

]
[(V1 − V2)X + (U2 − U1)Y + (U1V2 − U2V1)] . (21)

The terms in the second brackets on both left- and right-hand sides are, apart
from the sign, equal. After dividing equation (20) by equation (21), the corre-
sponding terms eliminate each other and we obtain

Ẍ(Y − V1)− Ÿ (X − U1)
Ẍ(Y − V2)− Ÿ (X − U2)

=
Ÿ (Z −W1)− Z̈(Y − V1)
Ÿ (Z −W2)− Z̈(Y − V2)

. (22)

This equation can be arranged to became

(W1 −W2)(ẌY − Ÿ X) + (U1 − U2)(Ÿ Z − Z̈Y ) +
+(V1 − V2)(Z̈X − ẌZ) + (V1W2 − V2W1)Ẍ +

+(W1U2 −W2U1)Ÿ + (U1V2 − U2V1)Z̈ = 0, (23)

which can easily be integrated by time. The resultant integral is

(W1 −W2)(ẊY − Ẏ X) + (U1 − U2)(Ẏ Z − ŻY ) +
+(V1 − V2)(ŻX − ẊZ) + (V1W2 − V2W1)Ẋ +
+(W1U2 −W2U1)Ẏ + (U1V2 − U2V1)Ż = Cm, (24)

where Cm is an integration constant. This invariant can again be used to test
the correctness of a numerical integration of the solar motion through the GMC.

4. The motion of an Oort-cloud comet through a GMC

In this section, we derive the equations of motion of a comet being in the OC
during the passage of the solar system through the GMC with the properties
more specified in the previous sections. We denote the heliocentric radius and
velocity vectors of a given comet by r = (x, y, z) and ṙ = (ẋ, ẏ, ż), respectively.
In the mass-centre coordinate system, the radius and velocity vectors of the
comet are rc = (xc, yc, zc) and ṙc = (ẋc, ẏc, żc), respectively. The vector r is
related to the vector rc as

r = rc −R (25)

(consequently, r̈ = r̈c − R̈).
Each condensation acts on the comet with the mass within the radius |P j −

rc|, which is given by

Mrj = 4πρcj |P j − rc|3 SCj , (26)
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Figure 1. The distributions of the perihelion distance (a), semi-major axis (b), and

square of eccentricity (c) of the comets in an outer part of the Oort cloud before

(dashed-lined bars) and after (solid-line bars) a passage of the whole solar system

through the hypothetical giant molecular cloud specified in Sect. 5.1.

where

SCj =
∞∑

i=0

(−1)i

(2i + 3).i!

(
|P j − rc|√

2σj

)2i

. (27)

Having the formula for the calculation of this mass, we can construct the equa-
tions of motion of the comet. The final form of the heliocentric acceleration
vector can be written as

r̈ = −k2 M�

r3
r − 4πk2

j∑
i=1

ρcj [SCj(rc − P j)− Sj(R− Pj)] . (28)

To integrate the motion of the Oort cloud through the GMC, we numerically
integrate the motion of each considered theoretical comet of the comet cloud
using the equations of motion (28) and, simultaneously, numerically integrate
the motion of the Sun using its equations of motion (7).
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Figure 2. The examples of the behavior of the osculating semi-major axis of four OC

comets, when the entire solar system passes through the theoretical GMC described in

Sect. 5.1. The initial orbital elements, log(ao), e2, ω, Ω, and cos(i), of the demonstrated

comets are: (a) 3.75, 0.55, 60o, 120o, and −0.9; (b) 4.00, 0.65, 90o, 30o, and −0.7; (c)

4.25, 0.65, 60o, 30o, and +0.7; (d) 4.75, 0.65, 30o, 150o, and +0.7, respectively. Notice

the different vertical scale of the plots.

5. Studied examples

Let us study a few specific examples of how a theoretical GMC changes the
structure of the Oort cloud when the Sun surrounded with its comet reservoir
goes deeply across the GMC. Three GMCs are considered.

The initial structure of the Oort cloud is approximated by the model worked
out in our earlier paper (Neslušan & Jakub́ık, 2005). The range of decadic
logarithm of the semi-major axis is considered somewhat larger than in the
previous paper: 3.75 ≤ log(ao) ≤ 5.00, since the outer part of the Oort cloud,
which is only possible to be studied, can be replenished, during the passage
through the GMC, from a more inner region. Because of this enlargement of the
range, we reduced, on the other-hand side, the step of log(ao) to be 0.25 (ao is
given in AU). Since the other details of the model can be found in (Neslušan
and Jakub́ık, 2005; Sect. 2.1), we only briefly summarize its basic characteristics
here: the argument of perihelion, ωo, and longitude of ascending node, Ωo, vary
from 15o to 345o with a step of 30o, cosine of inclination, cos(io), varies from
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Figure 3. The distributions of the perihelion distance (a), semi-major axis (b), and

square of eccentricity (c) of the comets in an outer part of the Oort cloud before

(dashed-lined bars) and after (solid-line bars) a passage of the whole solar system

through the hypothetical giant molecular cloud specified in Sect. 5.2.

−0.9 to +0.9 with a step of 0.2, and square of eccentricity, e2
o, varies from 0.05

to 0.95 with a step of 0.1. At the beginning of the time account, each theoretical
comet is assumed to be in the aphelion of its Keplerian orbit.

The model consists of orbits having all possible combinations of the above
specified discrete values of the five orbital elements. It means that the model of
the Oort cloud consists of 86 400 discrete orbits, in total.

We consider the same number of comets in each interval of log(a), i.e. the
flat distribution of semi-major axes. Since we found that the actual semi-major-
axis distribution is proportional to a−s with s ≈ 0.65 (Neslušan and Jakub́ık,
2005), we assign to each comet a weight to fit this distribution law. The weight
is assigned by the interval of log(a), in which the comet’s log(a) is initially
situated. Denoting the intervals of log(a) centered at the values of 3.75, 4.00,
4.25,..., 5.00 by serial numbers j = 1, 2, 3,..., 6, respectively, the weight of each
comet with log(a) in the j-th interval is given as

wj =
a−0.65

j

a−0.65
6

=
(
101.50−0.25j

)0.65
, (29)

whereby aj = 103.50+0.25j . Using this relation, we obtain the values of wj equal



42 M. Jakub́ık and L.Neslušan
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Figure 4. The distributions of the perihelion distance (a), semi-major axis (b), square

of eccentricity (c), argument of perihelion (d), longitude of ascending node (e), and

cosine of inclination (f) of the comets in an outer part of the Oort cloud before (dashed–

lined bars) and after (solid-line bars) a passage of the whole solar system through the

hypothetical giant molecular cloud specified in Sect. 5.3.

to 6.493816, 4.466836, 3.072557, 2.113489, 1.453784, and 1.000000 for j = 1, 2,
3, 4, 5, and 6, respectively. When the orbits are weighted, the model of the Oort
cloud counts 267 846.94 orbits.

At the beginning of the numerical integration, the velocity vector of the Sun
is Ṙ = (−25, −0.5, −0.1) km s−1.
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5.1. The passage of the OC through a single-condensation GMC - I

In this case, we consider a single condensation, representing a large spherical
GMC, with the mass MO = 1.5 × 105 M� and radius RO = 20 pc. Requiring
the density profile given by (2), the central density of the condensation must be
ρc = 8.75141×10−18 kgm−3 and dispersion σ = 8.647239×106 AU. To describe
the initial position of the Sun, we use the spherical coordinate system P , L,
and B corresponding with the rectangular u − v − w system. The position is
characterized by P = 1.3R0, L = −3o, and B = −3.5o. At this passage, the Sun
approaches the condensation centre up to 2.22 pc.

The distributions of the perihelion distance, semi-major axis, and square of
eccentricity of the OC comets after the passage through the GMC are shown
in Fig. 1 (solid-line bars). For a comparison, the corresponding initial, before
the passage, distributions (dashed-line bars) are shown, too. As a consequence
of the passage, the OC loses 22% of its population. In Fig. 1a, we can notice
a strong depletion of the outer parts of the OC: the numbers of comets with
log(a) > 4.25 after the passage is apparently smaller than that before the pas-
sage. However, some comets are not ejected and, thus, lost, but their semi-major
axes are reduced (an increase of the number for log(a) ≈ 4).

Concerning the perihelion distance, we can see that the perihelia are enlarged
in the region of log(q) < 2.75 (Fig. 1b). The GMC perturbing force does not,
practically, influence the very low eccentric orbit, with e2 < 0.1 (Fig. 1c). The
distribution of the rest of e2 range remains constant though the corresponding
population decreases during the passage.

A few examples of the evolution of cometary osculating semi-major axes
during the passage are shown in Fig. 2. Some semi-major axes can roughly be
conserved, though otherwise they largely change, when the OC passes internal
part of the GMC, as seen in plot a. Both an increase or decrease of this orbital
element can occur as illustrated in plots b and c, respectively. An interesting
case can be seen in plot d. At first, a strong perturbation enlarges the semi-
major axis to become hyperbolic (its value is negative, formally). However, this
period is short, the comet is still in the OC and perturbation acts. For another
period, the semi-major axis becomes positive, the comet moves on an elliptical
orbit. Finally, the comet receives another energy and, finally, becomes, second
time, hyperbolic and leaves the OC.

5.2. The passage of the OC through a single-condensation GMC - II

The second model of the considered single-condensation spherical GMC has the
mass MO = 4 × 105 M�, radius RO = 30 pc, central density (given by (2))
ρc = 6.66915×10−18 kgm−3, and dispersion σ = 1.312855×106 AU. The initial
position of the Sun is characterized by P = 1.3R0, L = +3.5o, and B = +2.5o.
At this passage, the Sun approaches the condensation centre up to 1.79 pc.
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The distributions of the perihelion distance, semi-major axis, and square of
eccentricity of the OC comets after the passage are shown in Fig. 3 (solid-line
bars). For a comparison, the corresponding initial distributions (dashed-line
bars) are shown, again. As a consequence of the passage, the OC loses the
same fraction of its population as in case I (Sect. 5.1), i.e. about 22%. This is
surprising, because the mass of the condensation is 2.67 times greater than that
in case I. The loss can be seen in the distribution of the semi-major axis, in
plot a. A depletion occurs for log(a) > 4.6. An interesting feature is an almost
conserved population with log(a) ≈ 4.5, but a strongly depleted population
with log(a) ≈ 4.25. This is likely a consequence of a perturbation mechanism
analogous to the resonant action in the case of the planetary perturbations. The
region log(a) < 4.1 remains practically intact by the GMC perturbation in this
case.

Similarly to case I, the perihelia are enlarged in the region of log(q) < 2.75
(Fig. 3b). Concerning the eccentricity, the GMC perturbing force only weakly,
this time, influences highly eccentric orbits, with e2 > 0.9 (Fig. 1c). The distri-
bution of the rest of e2 range remains roughly constant.

5.3. The passage of the OC through a two-condensation GMC

In this subsection, we investigate a consequence of the passage of OC through
the GMC consisting of two condensations. Specifically, the mass and radius of
the first condensation are identical to that introduced in Sect. 5.1 and the mass
and radius of the second condensation are 2.5× 105 M� and 25 pc, respectively.
So, the total mass of the GMC equals the mass of the larger condensation,
introduced in Sect. 5.2. The centre of the first condensation is situated at a
distance of P1 = 26.25 pc from the mass centre of the whole GMC (the origin
of the coordinate frame used), in direction L1 = 105o, and B1 = +80o, while
the centre of the second condensation is at P2 = 15.75 pc, L2 = 285o, and
B2 = −80o. At these values of P1 and P2, the separation of the condensations
(the distance between their centres) is 42 pc. This distance is chosen, in purpose,
to be slightly shorter than the sum of their radii. So, the condensations slightly
overlap each other at their borders.

The Sun passes the mass centre of the GMC at the closest distance of 0.85 pc.
After the passage, the distributions of the perihelion distance, semi-major axis,
square of eccentricity, as well as angular elements, i.e. the argument of perihelion,
longitude of ascending node, and cosine of inclination, of the OC comets are
shown in Fig. 4 (solid-line bars). Again, the corresponding initial distributions
(dashed-line bars) are also shown. As a consequence of the passage, the OC loses
about 12% of its population. This is, surprisingly, less than in the case of the
passages through the single-condensation GMC (Sects. 5.1 or 5.2).

The change of the perihelion-distance distribution (Fig. 4b) has a very sim-
ilar character as the already described changes after the single-condensation-
GMC passages. In the distribution of the square of eccentricity (Fig. 4c), no
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preferred interval, when this quantity remains untouched, occurs, this time.
The entire distribution remains quasi constant.

In all the studied passages, the directional distribution of orbits is almost
unchanged. In Fig. 4d, e, and f, we demonstrate only the angular distributions of
the OC comets in the case of the passage through the two-condensation GMC,
but the corresponding distributions for the two previous passages, through the
single-condensation GMCs, have practically the same, constant behavior.

6. Concluding remarks

Considering our simple models of the GMCs, with the mass comparable with an
upper limit of the observed GMC masses, however, we can report only a small
final effect of a passage of the solar system through a GMC on the OC. The
GMC perturbation does not practically change the directional distribution of the
orbits in the comet reservoir. The obvious consequence is an erosion of the outer
part of this reservoir. However, even the maximal found erosion rate, when 22%
of the OC population is lost, has not any fatal consequence on the comet cloud.
The last studied example moreover implies that a more complicated structure of
GMC may have a less erosive effect than a simple, single-spherical-condensation
GMC.

After looking at many individual examples of the evolution of OC-comet-
orbit semi-major axes (in the presented pictures, we showed only few illustrative
examples), i.e. evolution of the orbital energy in fact, one can confirm a relatively
large amplitude of many GMC perturbation effects. However, an enlarged semi-
major axis is often reduced back, therefore the final effect appears to be small.
Or, the effect remains large, but its result is an overall reduction of the semi-
major axis.

Of course, the work described in this paper is only a small contribution to
the problem. Our study goes on and we intend to assume also other, alternative
models of the GMC internal structure. The results of the further study, including
a much larger variety of the encounter geometry, will be presented in future
papers.
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