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Abstract. Observability function as instrumental characteristics of the Bologna
- Modra forward scatter system was computed using the ellipsoidal theory de-
scribed by Hines (1958). The final observability function is depicted on the
contour plot as a function of the horizontal coordinates of meteor radiant po-
sitions with a step of 1°.
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1. Introduction

The term ’observability function’ was introduced by Hines in a couple of arti-
cles (1955, 1958). In the first paper the geometry was simplified by a cylindrical
approximation of Fresnel’s ellipsoids. In the second paper a more precious ellip-
soidal theory was developed. After renaissance of interest in the forward scatter
technique a computer program 'Forward’ for calculation of the observability
function based on the ellipsoidal theory was introduced by Steyaert (1987) and
some modifications of the ellipsoidal theory, especially for underdense echoes,
were described by Verbeeck (1997).

2. Computational method

Geometry of the forward scatter system is depicted in Fig. 1, where Ry and Rg
are distances from the reflection point M to the transmitter T and receiver R,
respectively. The angle 2¢ is a forward scatter angle and 7 and p are the angles
between the axis of a meteor trail and directions to the T" and R in the point
M, respectively.

For a representation of geometrical parameters there was set up a cartesian
coordinate system which is shown in Fig. 2. The origin of the coordinate system
is identical with the midpoint of the transmitter - receiver (T-R) baseline of
a length 2L, so the coordinates of the transmitter and receiver are (-L,0,0)
and (L,0,0), respectively. The orientation of the meteor trail is specified by the
direction cosines (1,m,n), so the radiant position can be described using the
differential azimuth ¢ relatively to the T-R baseline and zenith angle ¥:

I =sind cos p, m = sin ¥ sin , n = cos v.
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Figure 1. Geometry of the forward scatter system. Rr and Rg are distances from the
reflection point M to the transmitter 1" and receiver R, respectively. The angle 2¢ is a
forward scatter angle and 7 and p are the angles between the axis of the meteor trail
and directions to T" and R in the point M, respectively.

The ellipsoidal theory is based on an assumption of specular scattering of
a radio wave. As ’potentially observable trails’ are assigned only trails which
fulfill the following geometrical conditions:

1. The reflection point must be visible from the locus of the transmitter and
receiver.

2. The reflection point must lie within the range of the meteor zone.

3. The meteor trail must be tangent to one of Fresnel’s ellipsoids, thus the
angles 7 and p must be supplementary: 7 4 p = 180°.

The condition of specular scattering leads to the following system of equa-
tions:

cosT 4 cosp = 0, (1)

cosT = (l(w+L) +my+nz)/RT, 2)
cos p = (Z(a: — L) +my + nz) /R, 3)
Rr =+/(z + L)% +y2 + 22, (4)
Rr=+/(z — L)2 + 32 + 22, (5)

z=+/(Rp+h—A)2 —22 —y2, (6)
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Figure 2. Coordinate system of the forward scatter setup.

where Rpg is the radius of the Earth, h is the height of the reflection point and
A is the distance between the origin of our coordinate system and the center of
the Earth. The system of equations (1) - (6) can be rewritten for a given trail
orientation (I,m,n) and h, as well as for an assumed value of y, as a polynomial
equation of the 6th degree, in the form:

K2 + Kox® + Ksa* + Kya® + Ks2? + Ker + K7 = 0. (7)

Because the forms of the polynomial coefficients (7) are complicated, they are
presented in Appendix A in the Matlab language syntax. From six roots of
the polynomial (7) are chosen those which are real and lie inside the boundary
satisfying condition 1. The boundary was described by Verbeeck (1995) in the
form:

V(RZ + L2)(h2 + 2Rgh)
REg

|z < — L. (8)
The resultant pairs (z,y) define the points where specular scatterring of the
signal can occur. For the given height and radiant position the points form
curves. Examples of the curves are depicted in Fig. 3.

The curves of specular scattering points are computed only for one height
h. However, the specular reflection can occur in a certain interval of heights.
Therefore, the weighting function W, , which is proportional to the numerousness
of the potentially observable trails for a given element do of the curve, was
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Figure 3. Examples of the curves of specular scattering points for various positions
of radiants (¢, ). The curves are calculated for T-R path distance of 1000 km and
height h = 100 km. The T-R baseline is depicted by a dashed thick line.

introduced by Hines (1958). The function W, has the form:

(R + Rp)sin?(1)do
RrRpy/[(55)% + (5%)?]

where ¢« = cos T + cos p and its partial derivatives are :

Wada =

o _ (m_nﬁ)RTQ—AHLA cosT n (m —nZJ‘rLA)RP;—F Az COST7 10)
dy R% R
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and

o (—nzz)Rr —(Azfz +L)cost  (I=nzz)Rr+ (A5 — L)cost
_— = 5 + ) .
Ox R%. R

(11)
In order for a potentially observable trail to be really observable, it must
reflect the radio signal from the transmitter with a sufficient amplitude. The
amplitude of a received echo must be higher than the receiver’s threshold value.
A fraction of the potentially observable trails N, that fulfill this condition is
possible to express using the radar equation for underdense echoes, provided
that the mean mass index of the observed particles is s = 2, using the form
(Hines, 1958):

N, x coszg A;lG:%FG;a sinv|[RrRr(Rr + Rp)(1 — cos® Bsin® ¢)] "2,

where Pr is the power of the transmitter signal, G resp. G is the gain of the
transmitter resp. receiver antenna in the direction of the reflection point, A, is
the threshold value of amplitude, v is the angle between the vector of the electric
field of the transmitted wave and direction to the receiver at the reflection point.
For the horizontal polarization the value of |sinv| can be computed applying
the formula:

ly2(1 — tan?s,) + 22 — (L + z tan §,)?|
(y?sec? 0 + [L + @ + ztan b)) (y2sec? 6. + [L — z + 2 tan 5,]?)?

|siny| =

)

where sind, = L/2Rpg, and angles 8 and ¢ can be computed as follows:

R2. + R%, — AL*

2RrRp

The numerousness of the observable trails for a given element do of the curve
o is proportional to W,N,, so the number of the observable trails for a given
radiant position is proportional to: [W,N,do. This value is after normalisation
called the ’observability function’ for the given radiant direction (Hines, 1958).

cos 2¢ =

3. Observability function of the Bologna - Modra forward
scatter system

The forward scatter system for meteor observation Bologna - Modra is part
of the BLM system (Bologna - Lecce - Modra), described by Cevolani et al.
(1996). The system utilizes a continuous wave with a frequency of 42.7 MHz
and peak power of 1 kW. The transmitter is located in Budrio near Bologna
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(44.6°N,11.5°F) and receiver in Modra (48.4°N,17.3°F). The T-R path length
of the system is 612 km.

The aerials of the transmitter and receiver are identical, 4 element Yagi
mounted horizontally at a height of 1A above ground. The elevation of the main
lobe is &~ 14°. The combined gain factor of the transmitter and receiver antenna
is depicted in Fig. 4.
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Figure 4. Combined theoretical gain factor of the transmitter and receiver antenna of
the Bologna - Modra system (T-R path distance 612 km) at a 100 km height projected
on the z,y plane.

The resultant observability function of the Bologna - Modra system was
computed according to the method described in Sec. 2 for the network of hori-
zontal coordinates of radiant positions with a step of 1°. The final contour plot
is displayed in Fig. 5.

4. Discussion and conclusions

Although the observability function is calculated by applying the exact ellip-
soidal theory, it is possible to guess some sources of errors, which affect its
precision. First of all, the function is calculated using theoretical antenna dia-
grams, but real diagrams will be more complicated. Further, the value of the
mass index of s = 2 is implicitly assumed. In reality the value of s is an unknown
observational parameter.

A daily variation of the observability function for a given radiant can be
derived from Fig. 5. For meteor showers which have dominant activity during
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Figure 5. Observability function of the Bologna - Modra forward scatter system as a

function of the azimuth and zenital distance of a radiant. The function is normalized

to a maximum value of 1.

the observational period, a correlation between real daily variation of activity

and daily variation of the observability function can be expected.
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A. Coefficients of the polynomial equation (7)

%designation of variables:

%R: diameter of Earth

%h: height of reflection point
%1,m,n: direction cosines

d=2x*L %T-R distance
A=sqrt(R"2 - (d°2)/4); f=(R+h)"2;

%coefficients computing

K11=0; K12=0; K13=0; K14=0;

K15=(-1/4%d"2* (-32*n"2%1"2+64*n"~2*m"2) -1/4*d "~ 2% (=32%1"2*m~ 2+ (-4*1"2+4*m~2) “2) -8%n"2*1"2xd. . .
"2-8%d"2%172*m"2+1/2%d" 2% (4*n"2-4%1"2) * (-4*1"2+4*m"2) -1/4*d" 2% (4*n"2-4%1"2) "2) ;
K16=(-1/4%d"2% (64*m~2*n*Ax1+8*Lkn*Ax (~4*1"2+4*m"2) ) +16%d " 2*1*m"~2*n*xA-4*d " 2% (4*n~2-4*1"2) *. ..
LknkA-2+n*1kd"2% (8%A*1"2-8*n"2%A) +6*%L*kn*kd " 2x A% (-4*%1"2+4*m"2) -1/4%d " 2% ((-64*xA*1"2+64*n"2*A. . .
)*n*1+128*m~2*n*A*1)) ;

K17=(-1/4%d"2* ((32*1*m*A~2+8*d "~ 2*1*m) *Lkm+16*1 " 2+n"2*A~2) +(4*n~2%1"2*d~2-8+d"2*1~2*m~2) *f. . .
—12%1724n"2%d"2%A"2+124n" 2% 1" 2%d " 2+ £ ~2%d " 2% Lkmk (-4*1*m*xA”2-d"2+1*m) -1/4%d" 2% ((8*nx1*d"2+. ..
96*n*1*xA"2) *n*x1+64%A"2%1"2xm"2) —2xn*k1*d " 2% (-n*1xd"2-12*n*1*A~2) -2% (8%n"2%1"2%d"2-. ..
4%d"2%1"2%m"2) *f) ;

K21=0; K22=0; K23=0; K24=(-32%n"2%1*d"2*m+4*d"~2% (4*n"2-4*1"2) *1*m-4*d~2*1*m* (-4*1"2+4*m"2)) ;
K25=(-4*d"2* (8*A*1~2-8*n"2%A) *n*m+16%n*1"2+d "~ 2% A*m-4*d "2 (4*xn~2-4*1"2) *mkn*A-1/4%d 2% (64%*. . .
17 2*kn*kA*xm—16*mkn*A* (-4%1"2+4*m"~2))) ;
K26=(-48+n"2%1*d"2*A~2*m+1/2%d" 2% (4%n"2-4%1"2) * (-4*1*m*A~2-d"2*1*m) -2*d "~ 2*1*m* (4*n"~2*%A"2-. . .
4%172%xA"2) -4%d" 2% (-n*x1*d"2-12*%n*1*xA"2) *n*m-4*d "~ 2% (8xA*1~2-8*n"2%A) *A*x1*km-1/4%d"2* ((-32*n". . .
2%A"2+32%172%A"2) ¥1km+ (~8*1*¥m*A~2-2%d " 2% 1*m) * (~4*1 " 2+4*m"2) ~64*m*n"2%A~2%1) +(2+d"2* (4*n"2-. ..
4x172) ¥1xm+2%d " 2+ 1kmk (—4*1"2+4%m"~2) —16*n"2x1*d " 2*m) *f-2% (1640~ 2%1*d "~ 2*m+2+d " 2% (4*n~2-4*. . .
172) *1*m) *£) ;

K27=(6*n*1*d"2%A* (—4*1*m*A~2-d"2*1*m) -1/4*d" 2% ((-32%1*n*A~3-8*n*1*xd~2*A) *1¥m+4* (-8 1*m*A~. . .
2-2%d"2+1*m) *1*n*A) -4*d " 2% (-n*1*d"2-12*n*x1*A"2) xA*1*km-2%d " 2% 1xm* (4*1*xn*A"~3+n*1*d"2%A)) ;

K31=0; K32=0;
K33=(-16*d"2%1"2*m"~2+1/2*%d " 2% (4*n~2-4*1"2) * (-4*1"2+4*m"~2) -1/4%d" 2% (-32*n"2%1"2+64*n"2*m"2) . . .
-24xn"2%1"2%d"2-1/2%d" 2% (4*n"~2-4%1"2)"2) ;

K34=(-6*d" 2% (8*A*1"2-8*n"2%A) *n*1-12%d"2% (4*n"2-4*1"2) *n*x Lk A+6*1*¥n*d " 2xA* (-4*1"2+4*m"2) +. . .
16%d~2*%1km~2*n*A-1/4xd" 2% ((-64*A*1"2+64*n"2%A) *n*k1+128*m~2*xn*A*1) -1/4xd~ 2% (-8*n*1*A*. . .
(—4*172+4%m"2) -64*m”~2*n*A*1) ) ;

K35=(-4*n*1*d"~2% (-n*1%d"2-12+n*1%A"2) -72*1"2*n"2%d"2%A~2-2*% (-8*n"2%1"2%d"2-1/4*d"2* (4*n"2-. ..
4%172) "2) *f-2% (8*n~2%1"2%d~2-4*d"2*1"2*m"2) *f+1/2*d" 2% (4*n"2-4*1"2) * (4*n~2%A"2-4*1"2%A"2) .. .
=1/4%d"2% (8% (~n*1%d"2-12*n*1*A~2) *n*1+(8*A*1"2-8%n"2%A) "2) -1/4*d"2* ((8*n*1*d"2+96*n*1*A"~2) . ..
*n*1+64%A~2%1"2%m"2) —2%d " 2*Lkm* (—4*1*m*A~2-d"2*1*m) +(8%d"2+1"2*m"2-1/2*d 2% (4*n"2-4*1"2) *. . .
(=4*172+4%m"2) +1/4%d"2% (-32%n"2%1"2+64*n"2*m"~2) ) *£+24*n"2*1"2*%d"2*f-1/4*d" 2% ((8*n"2%A"2-. ..
8%172xA2) * (—4*1"2+4*m"2) -32+n"2%1 " 2% A~ 2+8% (—4*1*m*A~2-d "~ 2*1*m) *L*m+64*m~2*n"2*A"2) ) ;
K36=(-2% (-2*d " 2% (8*A*1~2-8*n"~2*A) *n*1-6*d "~ 2% (4*n~2-4%1"2) *n*x1*A) *f+6*x1kn*d "~ 2*A* (4*n~2*xA~2-. .
4%172%A"2) +1/2%d" 2% (4*%n"2-4%1"2) * (4*1*n*A~3+1*n*d"2+A) —1/2+d" 2% (-n*1*d"2-12*n*1*A"2) * (8*A. .
*172-8xn"2%A) + (—6xLxnxd 2% A* (=4*1"2+4*m"~2) —2%d " 2% (4*n"2-4*1"2) *n*1*xA-16%d"2*1*m" 2*n*A+1/...
4xd"2% ((~64*A*1"2+64%n"2%A) *n*1+128*m~2*n*kA*1) ) *£-1/4%d " 2% ((8*1*n*kA~3+2*1xn*kd " 2%A) *. . .
(—4%172+4*m"~2) +4* (8*n~2%A~2-8%1"2%A~2) *n*x1*A-16% (—4*x1*m*A~2-d"~2*1*m) *m*n*A) ) ;
K37=-12%n"2%1"2%d"2*f 2+ (8*n~2%1"2*d~2-4%d"~2*1~2+m"2) *f ~2-1/4%d "~ 2% (4* (8 1*kn*A~3+2*1*n*. . .

A" 2%A) *nx1kA+ (—4*1xm*A~2-d"2%1*m) "2) +(-24*1"2*n"2xd"2%A"2+1/4%d" 2% ((8*n*1*d~2+96*n*1*A"2) . ..
*nk1+64%A"2%1"2%m"2) +2%d " 2* Lkmx (—4*Lkm*A~2-d "2k 1*m) ) *f 2% (-2*n*1xd " 2% (-n*x1*d"2-12*n*1*A". ..
2)-36%1"2%n"2%d " 2%xA~2) *f-1/4%d "~ 2% (-n*k1*d~2-12%n*1%*A~2) ~2+6*1*n*xd "~ 2% A* (4*1*n*A~3+1*n*xd~2%A) ;

K41=0; K42=(-32*1*n"2*d"2*m+4*d"~ 2% (4*n"~2-4*1"2)*1*m) ;
K43=(32%n*1"2*d"2%A*m-4*d" 2% (4*n"2-4*1"2) *xm*n*A-4*d" 2% (8%A*1"2-8*n"2%A) *n*m) ;

K44=(-2% (-16*1*n"~2*d "~ 2*m+2%d " 2% (4*n"2-4%1"2) *1*m) *f-64*n"2*1*d " 2*%A"2*m+1/2xd" 2% (4*n"2-4%1. . .
~2) * (—4*1*m*A~2-d"~2*1*m) —4*d "~ 2% (4*n~2%A"2-4%1"2+A"2) ¥1*m-4*d "2 (-1 n*d"2-12*1*n*A~2) *n*m. . .
—4%d" 2% (8%A*1"2-8xn"2*%A) ¥ AxLxm+ (-2*%d " 2% (4*n"~2-4%1"2) *L*km+16*1*n"2%d"2+m) *f) ;

K45=(-4*d "2 (4*1*n*A"3+n*1%d"2%A) *1xm+4*d "~ 2% (4+n"~2%A~2-4*1"2%A"2) *m*n*A+8*n*1*d~2%Ax (41, ..
*m*A"2-d"2%1xm) —16*n*1"2%d " 2xAxm*f-4*d " 2% (-1*n*d"2-12%1*n*A"~2) *A*x1*m+ (-16*n*1"2xd " 2% A*m+. . .
A%d" 2% (4*n~2-4%1"2) kmkn*xA+4*d "~ 2% (8*xAx1~2-8*n"~2%A) xn*m) *f) ;
K46=((-16*1*n"2%d"2+m+2%d" 2% (4+¥n"2-4*1"2) ¥1*m) *f "2+ (48*n"2*1*d"2*A"2+m-1/2+d"2* (4*n"2-4*1. ..
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~2) * (—4*1*m*A~2-d"2%1%m) +2*%d" 2% (4*n"2%A"2-4%1"2%A"2) ¥1xm+4*d " 2% (-1*n*d"2-12%1*n*A"2) *n*m+. . .
4%d" 2% (8% A*x1~2-8%n"~2*A) *Ax1*m) *f+4%d "~ 2% (4*x1*n*A~3+n*1*d"2*A) *mkn*xA-1/2*d "~ 2% (4*n"2*%A"2-. . .
4x172%A"2) * (—4*1*m*xA"2-d"2%1*m) ) ;

K47=-1/2%d"2% (4*x1*n*A"~3+n*1*d"2*%A) * (—4*1*m*A"2-d"~2+1*m) +8*n* 1" 2xd "2+ Axm*f ~ 2+ (-6*n*1xd"2#A. . .
* (—4x1xm*A"2-d"2%1*m) +4*d "~ 2% (—1*nkd " 2-12*1*n*A"2) * Ak Lxm+2%d "~ 2% (4*Lxn*xA~3+n*1*d"2%A) *1*m) *f ;

KK51=(-16%n"2*1"2%d"2-1/4*d" 2% (4*n~2-4%1"2) "2) ;

KK52=(-8+d"2* (4*%n"2-4*1"2) *1*n*xA-4*d "~ 2% (8xA*1~2-8*n"2%A) *1*n) ;
KK53=(-64*d"2%1"2+n"2%A"2+16%n"2%1"2%d " 2*f-2*n*1%d" 2% (-n*1*d"2-12*n*1*A"~2) -2% (-8*n"2%1"2%. . .
d"2-1/4%3"2% (4*n"2-4%1"2) “2) *f+1/2%d " 2% (4*n~2-4*1"2) * (4*n~2*xA~2-4*1"2xA~2)-1/4*d~2* (8% (-n. ..
*1%kd~2-12%n*1%A"2) *1*kn+(8kA*x1~2-8%n~2%A) ~2));

KK54=(8%d "2 (4*%n"2%A"2-4*1"2%A~2) *L*kn*A+1/2%d " 2% (4*n~2-4*1"2) * (4*1*n*A"~3+1*n*d"2+A)-1/2%d. ..
“2% (-n*k1*kd"2-12*%n*k1*A"2) % (8xA*x1"2-8*n"2%A) +(2+d " 2% (4*n"2-4*1"2) *Lxn*A+2*d "~ 2% (8*A*1"2-8%n". ..
2%A) ¥1*n) *F -2k (—2%d" 2% (8% A*1~2-8+n"2xA) *L*xn-6*d "~ 2% (4*n~2-4%1"2) *1*kn*A) *f) ;

KK55=(-1/4%d"2* (-8% (4*1*n*A"~3+1*n*d"2%A) *1*n*A+(4*n"~2*%A"2-4%x1"2xA~2) "2) -1/4%d" 2+ (-n*1*d". ..
2-12%n*1*A~2) "2+6*1knkd " 2xA* (4*1*n*kA~3+1*n*xd~2*A) +(24%d 2% 1~ 2*xn"2*A~2-1/2*d"2* (4*n~2-4%. . .
172) % (4%n"2%A"2-4%1"2%A"2) +1/4*d 2% (8% (-n*1*d"2-12*n*1*A"2) *1*n+(8*A*x1~2-8*n"2xA) "2) ) *xf-. ..
2k (=2*n*1%d"2% (-n*1%d"2-12%n*1*A~2) -36*d"2*1"2*n"~2%A~2) *f+(-8%n"2*%1"2*d"2-1/4%d"2* (4*n"2-. ..
4%172)"2) *f"2-12*n"2x1"2*%d"2xf"2) ;

KK56=((-6*d"~2% (4*n"2*A"2-4%1"2%A~2) *1*n*A-1/2*d " 2% (4*n"2-4*1"2) * (4*1*n*A~3+1*n*d"2*%A)+1/2%. ..
A72% (-n*1*d"2-12*n*1*A"2) * (8%A*x1"2-8*n"2*A) ) ¥£-1/2+d" 2% (4*1*n*A~3+1*n*d"2*A) * (4*n"2%xA"2-. ..
4x172xA"2) +(~2%d" 2% (8*A*1"2-8*n"2%A) *1*n-6*d "2 (4*n"2-4*1"2) xL*n*A) *£~2) ;
KKB7=4%n"2%1"2%d"2*f "3+ (1/4%d" 2% (-n*1*d"2-12*n*1*A~2) “2-6+1*kn*d " 2*A* (4*xL*n*A~3+1*n*d"2*A)) . ..
*f+ (-2%n*1%kd " 2% (-n*x1kd~2-12%n*1%A~2) -36%d~2%1~2+n"2%A~2) *f ~2-1/4%d "~ 2% (4*x1*n*A~3+1*n*xd~2%A) ~2;

%coefficients of polynomial

K1=K11%y~4+K21%y"3+K31%y 2+KA1%y+KK51; K2=K12%y 4+K22%y 3+K32%y"2+KA2%y+KK52;
K3=K13*(y~4)+K23* (y~3) +K33* (y~2) +K43*y+KK53; K4=K14*(y~4)+K24*(y~3)+K34* (y~2)+K44*y+KK54;
K5=K15% (y~4)+K25* (y~3) +K35* (y~2) +K45*xy+KK55; K6=K16% (y~4)+K26* (y~3)+K36% (y~2) +K46*y+KK56;
K7=K17* (y~4) +K27* (y~3) +K37* (y~2) +K47*y+KK57 ;

p= [K1 K2 K3 K4 K5 K6 K7]; Ypolynomial representation in Matlab



