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059 60 Tatranská Lomnica, The Slovak Republic,

(E-mail: mjakubik@ta3.sk, ne@ta3.sk)

Received: June 3, 2009; Accepted: September 23, 2009

Abstract. The distant comet reservoir, Oort cloud, is perturbed by the Galac-
tic tide, nearly passing stars, and giant interstellar molecular clouds. The per-
turbations by the latter are least frequent, but their amplitude is expected to be
highest. In this work, we consider two models of a dense region of a giant molec-
ular cloud and investigate its gravitational effect on the cometary Oort cloud,
when the Solar System passes through. Since the comets in the Oort cloud
prevailingly move in orbits with high galactic inclinations, we consider two ge-
ometries of the encounter differing in this aspect. Since the outer border of a
relatively concentrated part of the real Oort cloud is estimated at ∼50 000 AU
in terms of the semi-major axis, a, its passage through the central region of
a giant molecular cloud does not, according to our simulations, significantly
erode the Oort cloud. Although, it can change its structure for a >≈ 104.4 AU.
In our simulations, some changes depend on the model considered. For the
Plummer model, the giant-molecular-cloud gravity caused an enlargement of
the dispersion of galactic inclination and is selective to the specific values of
the galactic argument of perihelion.

Key words: Oort cloud – giant molecular clouds – Plummer model

1. Introduction

It is well-known that the majority of comets are situated in the distant reservoir
of these bodies, which is known as the Oort Cloud (OC). In the OC, comets
are perturbed by several so-called outer perturbers. Besides the usual domi-
nant perturbation by the Galactic tide, comet trajectories are influenced by the
nearly passing alien stars and interstellar matter concentrated into the inter-
stellar clouds.

Among the interstellar clouds, giant molecular clouds (GMCs) have been,
especially, assumed to be the objects that could significantly perturb the OC
comets. Bierman (1978) found that the outer part of OC can considerably be
depleted due to the collisions with the interstellar clouds. Napier & Staniucha
(1982) and Clube & Napier (1984) attempted to prove that the outer region
of the OC, beyond ∼10 000 AU, was completely destroyed, so far, when the
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Solar System (SS) encountered the GMCs or their substructures. At the same
time, a new population of comets is captured from the GMCs (or, alternatively,
the comets were drawn to the outer region from the inner comet cloud, below
∼10 000 AU). They estimated the number density of comets in the GMCs to
be about 10−1 AU−3. Other authors (e.g. Hut & Tremaine, 1985; Bailey, 1986),
however, objected that Napier & Staniucha and Clube & Napier overestimated
or underestimated some parameters of a typical encounter of the SS with a GMC
and demonstrated that the effect of GMCs on the OC is not so extreme.

Recently, Mazeeva (2004) considered three examples of GMCs consisting of
several (25 and 7) condensations as well as a GMC with a uniform density
distribution and demonstrated a large influence of the GMCs on the OC-comet
dynamics, especially in the case of structured, multi-condensation GMCs.

Despite the works mentioned above, the structure of the GMCs and their
efficiency to perturb the OC-comet orbits remain uncertain. Mostly, this fact
has caused that no GMC perturbations have been considered in the modelling
of the OC formation, the most recent results including (Duncan et al., 1987;
Dones et al., 2004; Brasser et al., 2006; 2007; 2008; Dybczyński et al., 2008;
Leto et al., 2008; Kaib & Quinn, 2008).

In our work, we probe an impact of a GMC gravity on the structure of the
OC. Specifically, we study the impact in the case, when the SS flies through a
relatively dense region of a GMC, which is approximated by simplified models,
in this paper. (We refer to this dense region as ”condensation”, hereinafter.) All
combinations of two models of the GMC condensation and two geometries of
the passage are considered.

2. About the observed structure of GMCs

Rosolowsky (2007) observed the GMCs in the nearby galaxy M31. In the table
of GMC properties, presented in his paper, the deconvolved radii range from 19
to 92 pc and derived masses from 1.5× 105 to 7.8× 105 M�.

The GMCs use to be identified and their internal structure uses to be studied
from CO emission contours (e.g. Solomon et al., 1987). The GMCs are usually
characterized by the total mass and effective radius. The latter is the radius of a
hypothetical sphere containing all mass of the given GMC. In the given context,
a spherical distribution of the GMC density, ρ, is assumed and described by
relation

ρ(p) = ρ1

(
R1

p

)α
, (1)

where p is the cloud-centric distance,R1 is the maximum radius of the GMC, and
ρ1 is the density at R1. The standard value of power-index α is 1. This value
is, however, not strict. Solomon et al. (1987) demonstrated that the density
distribution law with α = 2 also fits well an observed photometric behaviour.
From the point of view of a dynamical study, the important feature of the density
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law (1), empirically derived from the CO-emission photometry, is a truncation of
the cloud at p = R1, i.e. ρ = 0 for p > R1. This yields an artificial discontinuity
in the distribution of the GMC matter, which is unacceptable in any dynamical
study.

A requirement that the density must decrease abruptly to zero or, at least,
faster than ∝ r−2 is necessary because of too large mass situated outside of
the sphere with radius R1. In a more detail, this mass would be infinite, if we
considered the distribution law (1) with α ≤ 2 from the centre of the GMC to
infinity. If we identified the border of the GMC with the distance, at which the
density would decrease down to a common inter galactic density, ∼10−22 kg m−3,
then this ”outer” mass would still exceed the mass inside radius R1 by several
orders of magnitude. For example, it would reach the value of 1.6× 109 M� for
the GMC with mass 5 × 105 M� being within R1 ≈ 50 pc. The density would
decrease to the inter-galactic density at the distance of 734 pc. It is difficult to
believe that such a matter, if actually existed, could evade detection.

When discussing the GMC structure, it is worth mentioning the theoretical
deductions and a summary, at the same time, of some well-known properties
of GMCs published by Williams et al. (2000). In the context of our work, they
claimed, especially, that the structure of GMCs is fractal and, from the largest
down to stellar-sized scale, the fractals are self-similar (except of the regions
of an intensive star formation), i.e. the description of their structure can be
approximated by the same matter-distribution law. The authors suggest that the
density behaviour of the clumps inside the GMCs, if its shape is approximated
by a sphere, can be described as proportional to ∝ r−2, i.e. α = 2.

The observational facts mentioned above indicate that no suitable model of
the GMC structure is known to provide an acceptable description of GMC’s
gravitational potential required in dynamical studies. The research of the dy-
namics of bodies in the GMC gravity must, thus, still rely on some simplified,
theoretical models.

3. Categorization of encounters

A GMC is, typically, a complex of a number of various structures. These struc-
tures comprise large clouds of gas and dust, star-forming regions, hot dense
cores, ridges, etc. Even if we knew a more precise and realistic description of
a complex, the calculation of its gravitational potential would be consuming a
computational-capacity and time beyond current technological capabilities. At
present, it is impossible to compute the gravitational acceleration of every test
particle (TP), in a model of the OC, in every orbit-integration time step for a
whole period of several million years of the SS passage around or through the
complex.

In the dynamical studies of the OC in a vicinity of a GMC, we are forced
to approximate the effect of the GMC on the cometary nuclei. According to the
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increasing probability of occurrence of an encounter, it is appropriate to divide
the encounter into three categories:

1. passages of the SS through a dense GMC condensation;
2. passages of the SS through an outer part of the complex;
3. distant passages of the SS around a GMC complex.

As mentioned in Sect. 1, we here deal with the first category.

4. The model of the Oort cloud

To characterize the magnitude of the perturbation by a GMC condensation
(GMCC, hereinafter) better, we perform a few simulations, in which the OC
comets are perturbed by GMCCs. The model of OC-comet orbits is created
to be consistent with that obtained within the simulation of the OC forma-
tion, for 2 Gyr, performed by Dybczyński et al. (2008) and Leto et al. (2008).
In the final stage, the distribution of eccentricity could be approximated, ac-
cording to the output data obtained by Dybczyński et al. and Leto et al. (see
http://www.astro.sk/∼mjakubik/AstroDyn/), as

N(e) = 29.4 exp
[
− (e− 0.945)2

2× 0.0019

]
+ 4.8 exp

[
− (e− 0.945)2

2× 0.1475

]
(2)

and that of galactic inclination as

N(i) = 37.5 exp
[
− (i− 84.8)2

2× 15.6

]
+ 4.4 exp

[
− (i− 84.8)2

2× 510

]
(3)

for the region of semi-major axis a ≥ 2000 AU, where i is given in degrees.
To model specific orbits, we select 28 discrete values of eccentricity and 28

discrete values of inclination satisfying the distributions described by equations
(2) and (3). In more detail, there are randomly generated 1, 1, 1, 2, 2, 4, and
17 discrete values of e in the intervals of 0.3− 0.4, 0.4− 0.5, 0.5− 0.6, 0.6− 0.7,
0.7 − 0.8, 0.8 − 0.9, and 0.9 − 1.0, respectively. As well, there are randomly
generated 1, 4, 20, 2, and 1 values of i in the intervals of 40o − 60o, 60o − 80o,
80o − 100o, 100o − 120o, and 120o − 140o, respectively.

The galactic argument of perihelion, ω, and longitude of ascending node, Ω,
of each modelled orbit are generated randomly in 12 equidistant sub-intervals
of the entire interval spanning from 0o to 360o. Specifically, a discrete value of ω
is randomly generated for 0o−30o interval, another value for 30o−60o interval,
etc. The same generation procedure is performed to obtain 12 values of Ω. For
a given value of the semi-major axis, the combination of all the above-described
discrete values of e, i, ω, and Ω provides the modelled orbits of 112 896 TPs.
The initial position of every test particle, representing a comet nucleus in the
OC, is that in the aphelion of its modelled orbit.
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Since we aim to study a possible disruption of the OC during the passage
of the SS through a GMCC, we do not reduce the number of TPs at the outer
border of the OC in accordance with the model by Dybczyński et al. and Leto et
al., but we consider the same number of TPs for each considered discrete value
of the TP-orbit semi-major axis. In the logarithmic scale, we choose 5 values of
log10 a to map the influence of a GMC on the OC radial structure: log10 a = 4.1,
4.4, 4.7, 5.0, and 5.3. Therefore, every simulation of the passage of SS through a
given GMCC, described below, entails 564 480 TPs, in total. We do not suppose
any significant influence of the GMCC on the deep interior of the OC, therefore
the region with log10 a < 4.1 is not considered.

With respect to the high abundance of high galactic inclinations, we consider
two geometries (in the galactic coordinate system) of the penetration of the SS
through the GMCC:

geometry I: cloud-centric z-coordinate of the Sun is large in comparison with
its x- and y-coordinates at the minimum-proximity distance to the GMCC
centre. The initial cloud-centric radius and velocity vectors of the Sun are
chosen to be p� = (8.39415476659495384 × 107, 1.63165839848058000 × 107,
1.50781884461960886 × 107) AU and ṗ� = (−1.32794083667699195 × 10−2,
−2.34151798290726902× 10−3,−2.37763967205307028× 10−3) AU day−1.

geometry II: cloud-centric z-coordinate of the Sun is small in comparison
with its x- and y-coordinates at the minimum-proximity distance to the GMCC
centre. The initial cloud-centric radius vector of the Sun is identical to that
in geometry I. The solar velocity vector is chosen, in this case, to be ṗ� =
(−1.31991223008173404× 10−2,−2.54175032644409458× 10−3,
−2.60791855929692722× 10−3) AU day−1.

With these initial geometries, the Sun passes the centre of the GMCC
at minimum-proximity distance of 6.21 pc (1.28 × 106 AU). The simulation is
started when the Sun is at the distance of 421 pc (8.68×107 AU) from the centre
of the GMCC and finishes when the Sun, after passing the centre, again reaches
this distance. The Sun moves along this trajectory during about 1.25×1010 days
(34.2 million years).

We start and end the integration of solar motion in such the large GMCC-
centric distance to avoid some artificial effects at a sudden emplacement of
the Sun and OC into the GMCC gravitational potential. The action of the
GMCC should start and ”extinct” smoothly. Taking into account the structure
of GMCC is important during a much shorter than the above-mentioned period.
Namely, the gravity of structured GMCC is, practically, different from that of a
point-like GMCC, when the SS is within the region of GMCC with a significantly
high density gradient. In both considered GMCC models, such regions can be
found within a distance of several parsecs from the GMCC centre (in the case
of the Plummer model, see Sect. 5.3, this region is roughly within the Plummer
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radius being 8.42 pc (cf. this value with the solar-motion starting distance of
421 pc).

5. Modelling a GMC condensation

5.1. Purpose of the modelling

In this work, we perform a first step in our mapping of the GMCC perturbation
on the OC considering two simplified models of the GMCC. The simplification
assumes a smooth, single-law, density profile and the sphericity of the GMCC.
One purpose of the simplification is a possibility to find some invariants of solar
motion through the GMCC and, thus, to evaluate precisely the quality of the
numerical integration at least for this massive body. Some more realistic models
would likely provide qualitatively different results. Nevertheless, we believe that
our present results achieved considering the simplified models are also beneficial.

The gravitational action of GMCC results in the accelerations of a given TP
and the Sun. If we investigate the TP, which is gravitationally bound to the Sun
and situated in the phase-space of the OC, it is suitable to use the heliocentric
coordinate frame. If the orbit of the TP in this frame becomes hyperbolic, it is
clear that the TP is no longer any member of the OC and SS.

The acceleration of the given TP, due to the GMCC, in the heliocentric
coordinate frame, can be calculated as the difference in the accelerations of
both the TP in the GMCC-centric coordinate frame and the Sun in the GMCC-
centric frame. Hereinafter, we refer to this difference in TP and Sun accelerations
as ”acceleration difference” or ”AcDf”.

To calculate the accelerations of the Sun and TPs, we need to accept a model
of GMCC to determine the gravitational potential, in which the Sun and TPs
move.

5.2. Model 1: density proportional to r−α

As mentioned in Sect. 2, the density behaviour within a GMCC, approximated
by a spheroid, was suggested to be described by equation (1), on the basis of
radio observations. In a precise study of the OC dynamics, we need to start
following the SS motion at a large distance from the GMCC, where the pertur-
bation is negligible. In such a study, the truncation of GMCC at the distance R1

represents a problem, because some artificial effects would be expected to occur,
if we assumed the Sun and its OC to cross the density discontinuity. Of course,
no such a discontinuity is expected at a real GMCC, but the density behaviour
for distances larger than R1 is difficult to determine even in a theoretical way.

To avoid the truncation problem and to estimate the perturbation of a dense
GMCC on the OC, let us approximately assume that the sphere of influence of
a given GMCC has a radius p1 < R1. Then, we can integrate the motion of
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the SS bodies completely within the sphere of radius R1 and, thus, avoid the
discontinuity problem.

When the usual value α = 1 of the index appearing in (1) is considered, we
can easily show that the GMCC causes a constant acceleration on a SS object
in a condensation-centric distance p < R1 and, therefore, zero AcDf. Inside
the sphere of radius R1, the GMCC of this kind has no influence on the OC
dynamics in the SS-barycentre coordinate system.

Within the approximation of the GMCC-density behaviour by the equation
(1), the consideration of the index α = 2, which is also acceptable (Solomon
et al. 1987), seems to be more realistic. In the following, we try to justify the
value of α = 2 in a theoretical way. Namely, we can demonstrate that the pro-
portionality ∝ p−2 between the GMCC density and the cloud-centric distance
must occur in an isothermal GMCC, if its matter is, at least approximately, in
the thermodynamical equilibrium during an investigated period. Our derivation
of the density behaviour in this case is following.

According to Whitworth and Summers (1985), the collapse or expansion of
a spherically symmetric, isothermal sphere can be described by the equations

∂Mp

∂p
− 4πp2ρ = 0, (4)

∂Mp

∂t
+ 4πp2ρu = 0, (5)

∂u

∂t
+ u

∂u

∂p
+
GMp

p2
+

1
ρ

∂χ

∂p
= 0, (6)

χ = v2
oρ, (7)

where Mp is the mass within the sphere of radius p, t is time, u is the velocity of
the outward radial flux, χ is the pressure, and vo is the isothermal sound speed.
The latter can be given as vo =

√
kT/µ, where k is the Boltzmann constant, T

is the gas temperature, and µ is its molecular weight. For a typical abundances
of the constituents of interstellar gas, µ = mH/(0.72/2 + 0.25/4) .= 2.367mH

(mH is the mass of the hydrogen atom).
Following Shu (1977), Whitworth and Summers re-wrote these equations

with the help of dimensionless variable ξ defined by

p = ξvot (8)

and dimensionless quantities1

Mp =
wv3

ot

G
, (9)

1Whitworth and Summers (1985) labelled dimensionless variable by x and dimensionless quan-
tities by w, y, and z. Since we need symbols x, y, and z for other purpose, we use ξ, η, and
ζ.
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u = ηvo, (10)

ρ =
ζ

4πGt2
. (11)

The new equations are

dη

dξ
=

(ξ − η)2ζ − 2(ξ − η)/ξ
(ξ − η)2 − 1

, (12)

dζ

dξ
=

(ξ − η)ζ2 − 2(ξ − η)2ζ/ξ

(ξ − η)2 − 1
, (13)

w = (ξ − η)ζξ2. (14)

If we further adopt the simplification that the inward or outward flux of
the matter in the part of the GMCC, where the OC is situated, is constant
during the whole period of our investigation of the OC dynamics, we can write
u = const. and, thus, η = const.. Consequently, dη/dξ = 0 and, from relation
(12), one gets

ξ − η =
2
ζξ
. (15)

Supplying this result into equation (13), we obtain

dζ

dξ
= −2ζ

ξ
. (16)

Integrating this equation, we can demonstrate that ζ ∝ ξ−2 and hence ρ ∝ p−2.
In other words, the latter implies α = 2 in equation (1).

Now, let us deal with the calculation of the gravitational acceleration. In
this calculation, we are interested in the mass Mp within the sphere of radius p.
Supplying ξ−η given by relation (15) into equation (14), we easily find w = 2ξ.
The latter in a combination with relations (9) and (8) gives

Mp =
2v2
o

G
p. (17)

Using the Newton gravitational law, we can express the acceleration of the
Sun as well as a comet (or TP) in the mass-centre (i.e. GMCC-centre, in fact)
coordinate frame. For the solar-acceleration vector, we can write

p̈� = −2v2
o

p2
�

p�, (18)

where p� = (p�x, p�y, p�z) and p� = |p�|.
Integrating Eqs.(18), we can obtain the invariants of the solar motion

ṗ�xp�y − ṗ�yp�x = Cz1, (19)



Oort-cloud dynamics during an encounter of a dense GMC 93

ṗ�yp�z − ṗ�zp�y = Cx1, (20)

ṗ�zp�x − ṗ�xp�z = Cy1, (21)

and
ṗ2
�x + ṗ2

�y + ṗ2
�z + 4v2

o ln p� = h, (22)

which can be used to check the accuracy of the numerical integration.
The equations of TP motion in the GMCC-centre frame are

p̈ = −GM�
r3

r − 2v2
o

p2
p, (23)

where p = (px, py, pz), p = |p|, r = (x, y, z), and r = |r|. The heliocentric
radius-vector of the TP, r, is related to its GMCC-centric radius-vector, p, as

r = p− p�. (24)

For TPs, we however primarily need the vector of AcDf, i.e. the TP’s SS-
barycentre coordinates. Subtracting the acceleration of the Sun from that of a
given TP, the AcDf vector is

r̈ = −GM�
r3

r + 2v2
o

(
p�
p2
�
− p

p2

)
. (25)

In the specific model considered in the numerical simulation, velocity vo is
gauged in the way that the GMCC mass within the radius of 5 × 105 AU is
2.5× 105 M�.

5.3. Model 2: Plummer model

Another probe is the study of the SS passage through a dense GMCC, when the
Plummer model (Plummer, 1911) is used to describe its potential. The Plummer
potential of a spherically symmetric gaseous condensation, at distance p from
its centre, is given by (see also Binney and Tremaine, 1987; Kroupa et al., 2001;
see also Brasser et al., 2006, for usage in the context of the comet cloud)

Φ(p) =
GMT√
p2 + c2

, (26)

where MT is its total mass and c is the so-called Plummer radius. It can be used
to scale the rate of how steeply the density of the condensation rises toward its
centre. The density behaviour is given as

ρ(p) =
ρo

(p2 + c2)5/2
. (27)
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This implies that the mass within the sphere of radius p is

Mp =
∫ p

0

4πp2ρ(p, c)dp =
MT p

3

(p2 + c2)3/2
. (28)

The constant ρo is replaced by MT realizing that

MT =
∫ ∞

0

4πp2ρ(p, c)dp =
4π
3
ρoc

3. (29)

The equations of solar motion in the cloud-centric coordinate system are

p̈� = −GMT
p�(

p2
� + c2

)3/2 . (30)

One can easily find four respective invariants of the solar motion:

Cz = ṗ�xp�y − ṗ�yp�x, (31)

Cz = ṗ�yp�z − ṗ�zp�y, (32)

Cz = ṗ�zp�x − ṗ�xp�z, (33)

h� =
1
2
(
ṗ2
�x + ṗ2

�y + ṗ2
�z
)
− GMT√

p2
� + c2

, (34)

which can be used to estimate the precision of the numerical integration of solar
motion through the GMCC.

The heliocentric acceleration vector of the TP (i.e. TP’s AcDf) can be written
as

r̈ = −GM�r

r3
−GMT

[
p� + r(

p2
� + 2p�r + r2 + c2

)3/2 − p�(
p2
� + c2

)3/2
]
. (35)

We note that the transformation between the radius vectors of the TP in cloud-
centric and heliocentric coordinate frames, p and r, is given by relation (24).

In the specific model of the condensation introduced in this section, we
consider the total mass of the GMCC to be 2.5×105 M� (the same as in Model 1)
and the density in the centre equal to ρc = 100 M� pc−3 (6.77× 10−18 kg m−3).
This implies that the Plummer radius equals c = [3MT /(4πρc)]1/3 = 8.42 pc.

6. The results and their comparison

To estimate the amplitude of the perturbation of a GMCC on the OC and
to map the change of the OC structure, we perform the integration of motion
of all considered TPs (Sect. 4) for both chosen models of the GMCC (Sect. 5)
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Table 1. The amounts (in percent) of the TPs with the given value of initial semi-ma-

jor axis, a, which remained bound to the SS after their passages around the GMCC

having the structure described by Model 1 or Model 2. Two geometries of the passages,

in the case of each model, are considered.

Model 1 Model 2
log10 a geom. I geom. II geom. I geom. II

4.1 100.0 100.0 100.0 100.0
4.4 100.0 100.0 100.0 100.0
4.7 100.0 100.0 100.0 100.0
5.0 100.0 100.0 95.4 96.2
5.3 0.0 0.0 0.5 0.0
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Figure 1. The distributions of the semi-major axes of the OC-comet orbits before and

after the deep passage of the OC through the GMCC described by Models 1 (plots a

and b) and 2 (c and d) for the geometries I (plots a and c) and II (b and d). The vertical

solid lines indicate the initial values of a, before the passage. The dashed curves in the

plots are the distributions after the passage.
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and both chosen geometries (Sect. 4) of the passage. That is, we perform the
simultaneous numerical integration of the equations of solar motion (18) and
equations of TP motion (23) in the case of Model 1 and simultaneous numerical
integration of the equations of solar motion (30) and equations of TP motion
(35) in the case of Model 2. Each integration, irrespective of the model and
geometry, is performed for the time of 1.25× 1010 days (34.2 million years).
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Figure 2. The distributions of the galactic inclination of the OC-comet orbits before

(thick solid curve) and after (curves labelled in the plots) the deep passage of the OC

through the GMCC described by Models 1 (plots a and b) and 2 (plots c and d) for

the considered geometries I (plots a and c) and II (b and d).

The results of our simulations predict the following. The part of the OC
comets in orbits with a = 105.3 AU, in this simulation, is completely stripped
from the SS, regardless of the GMCC model or encounter geometry considered
(Table 1). Almost all TPs in the orbits with a = 105.0 AU and shorter values of
a survived the passage. Combining information in Table 1 and that in Fig. 1,
we can conclude that the semi-major axes of all orbits having a = 105.0 AU are
reduced. At least the outer-most surviving part of the OC shrinks due to the
action of the GMCC. Thus, the OC contains only orbits with a <≈ 90 000 AU
after the passage. On the contrary, the OC-comet orbits seem to be untouched,
if their semi-major axes are a <≈ 104 AU.
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Figure 3. The distributions of the eccentricity of the OC-comet orbits before (thick

solid curve) and after (curves labelled in the plots) the deep passage of the OC through

the GMCC described by Models 1 (plots a and b) and 2 (plots c and d) for the

geometries I (plots a and c) and II (plots b and d).

For Model 1, only a small part of the orbits having a ∼ 104.4 AU is sig-
nificantly perturbed by the GMCC in contrast to much larger changes in the
case of Model 2. In Fig. 1a,b, we can further see that the outer border of the
semi-major axis range is about ∼60 000 AU for Model 1, both geometries, and
∼70 000 AU for Model 2 and geometry II. A larger outer border of ∼90 000 AU
is found for Model 2 and geometry I.

It is well-known (e.g. Neslušan and Jakub́ık, 2005; Dybczyński et al., 2008)
that a great majority of the OC orbits have a high galactic inclination. The
peak of the i-distribution is centred at about 90o. It is the effect of the action
of Galactic tide. In Model 1, the encounter of the OC with a GMCC has almost
no impact on this peaked structure (Fig. 2a,b). We can see a small change in
the shape of the peak, but the dispersion of the inclination values is practically
conserved. In Model 2 (Fig. 2c,d), the dispersion of the peak is enlarged for all
considered values of initial semi-major axes.

The encounter causes a decrease of the orbital eccentricity for large values of
semi-major axes (log10 a = 4.7 and, especially, 5.0) for both considered models of
GMCC (Fig. 3). For the lowest a (log10 a = 4.1), the e-distribution is practically
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Figure 4. The distributions of the galactic argument of perihelion of the OC-comet

orbits before (4 thick solid curves in each plot) and after (curves labelled in the plots)

the deep passage of the OC through the GMCC described by Models 1 (plots a and

b) and 2 (c and d) for geometries I (plots a and c) and II (b and d).

conserved for both models. As well, it is conserved for log10 a = 4.4 and Model
1, both geometries. For Model 2, both geometries, and log10 a = 4.4, the initial
orbits become, statistically, more eccentric.

Finally, the action of the GMCC influences the distribution of the galactic
argument of perihelion in the case of Model 2 (Fig. 4c,d): the relative abundance
of orbits increases in intervals from ∼30o to ∼90o and from ∼240o to ∼300o

and decreases from ∼−70o to ∼+30o and from ∼110o to ∼240o. This change,
however, does not concern the orbits with initial log10 a = 4.1. For Model 1, no
significant change in this distribution is found (Fig. 4a,b).

We note that the distribution of the galactic longitude of perihelion (not
shown in any figure) is also slightly changed: the amplitude of its variation
is detectably enlarged for the orbits with initial log10 a ≥ 4.4. An increase or
decrease is not, however, related to any specific interval of the values of this
element. The increase of the amplitude appears, here, regardless of the model
or geometry considered.
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7. Conclusions

Before summarizing the conclusions, it is necessary to note that we considered
the simplified models of GMCCs, therefore the conclusions are rather indicative
than definitive. Another future studies of this problem are still needed to clarify
the role of the GMCs in the OC dynamics more. Based on our models and
numerical integrations performed, the following can be stated.

Since the outer border of a relatively concentrated part of the real OC is
estimated at ∼50 000 AU in terms of the semi-major axis (only a small fraction
of OC orbits has a > 50 000 AU), the passage of the SS even through the central
region of a GMCC does not, according to our simulations, significantly erode
the OC, though it can change its structure for a >≈ 104.4 AU. Regardless of the
GMCC internal structure, the semi-major axes over this limit are reduced or
enlarged. In our simulations, some changes depend on the model considered. For
the Plummer model, the GMCC gravity causes an enlargement of the disper-
sion of galactic inclination and is selective to the specific values of the galactic
argument of perihelion.
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