
Contrib. Astron. Obs. Skalnaté Pleso 41, 54 – 62, (2011)
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Abstract. In this paper, a computational algorithm for the initial value prob-
lem of J2 gravity perturbed trajectories in cylindrical coordinates will be es-
tablished. Applications of the algorithm for the problem of the final state pre-
diction are illustrated by numerical examples of eight test orbits of different
eccentricities. The numerical results are highly accurate and efficient in predict-
ing J2 final state for gravity perturbed trajectories which is of great importance
for scientific researches. Moreover, an additional efficiency of the algorithm is
that one can reach the accuracy of one cm using at most 70% of the num-
ber of steps that used for obtaining the reference final state solution. By this
reduction, the step size becomes larger, hence minimizing the computational
errors.
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1. Introduction

Some problems of dynamical astronomy are better studied using certain coor-
dinate systems rather than the Cartesian coordinates. As for examples, in the
galactic rotation, cylindrical coordinates are usually adopted, while the spher-
ical coordinates are suitable for the dynamics of globular clusters (e.g. Binney
and Merrifield, 1998).
On the other hand, the applications of the conventional equations of space dy-
namic for the motion of Earth’s artificial satellites give inaccurate prediction
for their positions and velocities. This is because these equations are unstable
in the Liapunov sense (Stiefel and Scheifele, 1971). In brief, the deficiency of
these equations is due to the choice of the variables, which in turn has led some
authors to propose successful devices to change dependent and/or independent
variables so as to regularize the differential equations of motion. The change
of the dependent and/or independent variables for the differential equations of
motion is one of the focal point of researches in space dynamics. There are many
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studies on the applications of these devices for some orbital systems ( Sharaf
et al., 1987; Sharaf and Ahmed, 1988; Sharaf et al., 1989; Sharaf and Goharji,
1990; Sharaf et al., 1991a, b; Sharaf et al., 1992; Sharaf and Sharaf, 1995; Sharaf
et al., 2006).
The described way of the numerical integration is sufficient to obtain very ac-
curate predictions of the final state which is of great importance for scientific
researches.
Now, one may ask : Do there exist another transformation equations (other than
mentioned above references) that produce accurate final state prediction? The
answer is the present paper, which produces, upon using cylindrical coordinates,
very accurate final state predictions, as judged by the error criteria 4r (for the
final position) and 4v (for the final velocity), which are less than one cm for r,
and almost of zero value for v. Moreover, an additional efficiency of the method
is that one can reach the above accuracy using at most 70% of the number of
steps used for obtaining the reference final state solution. By this reduction, the
step size becomes larger, hence minimizing the computational errors.

2. Analytical formulae in cylindrical coordinates

2.1. Coordinates, velocity transformations and the scale factors

x = u1 cosu2; y = u1 sinu2; z = u3, (1)

ẋ = u̇1 cosu2 − u̇2u1 sinu2; ẏ = u̇1 sinu2 + u̇2u1 cosu2; ż = u̇3, (2)

where

0 ≤ u1 <∞, −π < u2 ≤ π; −∞ < u3 <∞.

The scale factors of the transformation are

h2
1 = 1, h2

2 = u2
1, h

2
3 = 1.

2.2. Inverse transformations

From equations (1) we have

u1 = (x2 + y2)
1
2 ; u2 = arctan(

y

x
); u3 = z. (3)

From equations (2) we get

u̇1 =
(xẋ+ yẏ)

u1
; u̇2 =

(xẏ − yẋ)
u2

1

; u̇3 = ż (4)

where u1 is given in terms of x and y by the first of Equations (3).
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2.3. Equations of motion

In the present paper we shall suppose that the motion is controlled by a gravi-
tational potential v which will be in general a function of (u1, u2, u3).
From the above equations we get after some calculations that

u̇1 = u4,

u̇2 = u5,

u̇3 = u6,

u̇4 = u1u
2
5 +

∂v

∂u1
,

u̇5 =
−2u4u5

u1
+

1
u2

1

∂v

∂u2
,

u̇6 =
∂v

∂u3
. (5)

The partial derivatives ∂v
∂uj

; j = 1, 2, 3 are given in terms of the known partial

derivatives ∂v
∂x ,

∂v
∂y and ∂v

∂x by:

∂v

∂u1
= cosu2

∂v

∂x
+ sinu2

∂v

∂y
,

∂v

∂u2
= −u1 sinu2

∂v

∂x
+ u1 cosu2

∂v

∂y
,

∂v

∂u3
=

∂v

∂z
. (6)

It should be noted that the equations of the present section are general in the
sense that they could be applied to any dynamical system.

3. J2 Gravity perturbed trajectories

3.1. The potential V and its partial derivatives

For J2 gravity perturbed trajectories, the potential V is given as:

v = v(x, y, z) =
µ

r
+

c

r3
[
3(
z

r
)2 − 1

]
(7)

where

c = J2µr
2
⊗/2; r = (x2 + y2 + z2)

1
2 .

µ is the gravitational parameter, J2 the second zonal harmonic, and r⊗ is
the mean Earth’s equatorial radius. The numerical values of these constants are:

µ = 398600.8 km3s−2,
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J2 = 1.0826157× 10−3,

R⊗ = 6378.135 km.

From Equation (7) we have:

∂v

∂x
= −µx

r3
+ 3c(

x

r5
)(1− 5z2

r2
),

∂v

∂y
= −µy

r3
+ 3c(

y

r5
)(1− 5z2

r2
),

∂v

∂z
= −µz

r3
+ 3c(

z

r5
)(3− 5z2

r2
). (8)

3.2. Initial value algorithm

In what follows, the initial value algorithm for J2 gravity perturbed trajectories
in cylindrical coordinates will be considered. The algorithm is described through
its basic points: input, output and computational steps

Input:

1. xo, yo, zo, ẋo, ẏo, żo at t = to,

2. the flight time t = tf ,

3. ∂v
∂x ,

∂v
∂y and ∂v

∂z ; (equations (7)),

Output:
x, y, z, ẋ, ẏ, ż at t = tf .

Computational steps:

1. Insert Equations (1) and (7) into Equations (6) to find the analytical ex-
pressions of the partial derivatives as :

∂v

∂u1
=

−u1(t)
(u2

1(t) + u2
3(t))

7
2

{
µu4

1(t) + 12cu2
3(t) + µu4

3(t) + u2
1(t)(−3c+ 2µu2

3(t)
}
,

∂v

∂u2
= 0, (9)

∂v

∂u3
=

−u3(t)
(u2

1(t) + u2
3(t))

7
2

{
µu4

1(t) + 6cu2
3(t) + µu4

3(t) + u2
1(t)(−9c+ 2µu2

3(t))
}
.

2. Compute the initial conditions uoj ; j = 1, 2, · · ·, 6 for the differential system
of Equations (5) by applying the transformation: (x, y, z) −→ (xo, yo, zo)
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and (ẋ, ẏ, ż) −→ (ẋo, ẏożo)
in equations (3) and (4).

3. Use these initial conditions to solve numerically the differential system of
Equation (5)for uj ; j = 1, 2, · · ·, 6 at t = tf , where u4 ≡ u̇1, u5 ≡ u̇2, u6 ≡ u̇3

at t = tf .

4. Use uj , u̇j ; j = 1, 2, 3 to compute x, y, z and ẋ, ẏ, ż at t = tf from the direct
transformations of Equations (1).

5. End.

3.3. Numerical applications

The purpose of this section is to demonstrate the efficiency of the initial value
problem using cylindrical coordinates in producing very accurate final state
predictions for J2 gravity perturbed trajectories

3.3.1. Test orbits

For the applications of the above formulations, we consider eight test orbits
given in Appendix c of Vinti’s book (1998). All these orbits have the initial
time to = 0 and each of them has a different flight time tf from others, they
cover the three basic types of conic motion-elliptic, parabolic and hyperbolic
orbits characterized by the initial conditions listed together with tf , in the first
columns of the tables of Appendix A of the present paper. The components of
the position vector for each orbit are in km, while the corresponding components
of the velocity vector are in km s−1.

3.3.2. Reference orbits

For each orbit, the J2 gravity perturbed equations of motion in Cartesian coor-
dinate are solved by the classical Runge-Kutta integrator. A final state predic-
tion was determined by reducing the step size until at least five decimal places
(≺ 10−2 meter (m)) stabilized in x(tf ), y(tf ) and z(tf ). These values are con-
sidered as reference final states solutions to the orbit they refer and are denoted
by :

rR ≡ (xR(tf ), yR(tf ), zR(tf )) and ṙR ≡ (ẋR(tf ), ẏR(tf ), żR(rf )) (10)

for the reference position and velocity vector respectively. The components of
position vectors are in km, while the corresponding components of the velocity
vector are in km s−1 as listed for each orbit in the second columns of the tables
of Appendix A.
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3.3.3. Efficiency of cylindrical coordinates

Upon the above reference solutions the efficiency of the initial value problem for
J2 gravity perturbed trajectories using cylindrical coordinates (PC- solution)
may be checked by testing its ability in predicting final states within certain
tolerances as follows:
Let r ≡ (x(tf ), y(tf ), z(tf )) and ṙ ≡ (ẋ(tf ), ẏ(tf ), ż(rf )) be the final state of the
PC- solution of a given orbit .The efficiency of the PC- solution is then checked
by the magnitude of the error criteria 4r and 4v as:

4r =
{

(x− xR)2 + (y − yR)2 + z − zR)2
} 1

2 × 1000(in m), (11)

4v =
{

(ẋ− ẋR)2 + (ẏ − ẏR)2 + (ż − żR)2
} 1

2 × 1000(in ms−1) (12)

such that the smaller values of4R and 4v, the higher efficiency in this
respect, we may define an acceptable solution set (S.S) to the problem at hand
as:

S.S = ((r, ṙ) : 4r ≤ ε1,4v ≤ ε2) (13)

where ε1,2 are given tolerances. For very accurate predictions required nowadays
we may consider the tolerances ε1,2 as:

ε1 = 1 meter± 10 centimeter,
ε2 = 0.25 m s−1. (14)

The components of the position and velocity vectors r (in km) and ṙ (in
km s−1) of the PC solution are listed for each of the test orbits in the third
columns of the tables of Appendix A, while the values of the errors 4r and 4v
of Equations (11) and (12) are given at the bottom of each table.
These values indicated in accordance of the acceptable solution set that the
PC solution is very accurate and efficient in predicating final state for J2 grav-
ity perturbed trajectories which is of great importance for scientific researches.
Moreover, the step size used in the differential solver for obtaining the PC so-
lution for each of the test orbit is at most 70% of the number of steps used for
obtaining the reference final state of the orbit. By this reduction, the step size
becomes larger, hence minimizing the computational errors.
Conclusion:
The described way of the numerical integration is sufficient to obtain very ac-
curate predictions of the final state which is of great importance for scientific
researches. By using our new method, one can reach the accuracy of one cm
using at most 70% of the number of steps used for obtaining the reference final
state solution. By this reduction, the step size becomes larger, hence minimizing
the computational errors.
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A. Numerical results

Table 1. Low-earth orbit.

Initial Conditions Reference Solution PC-Solution

xo = 2328.96591 xR = −516.450939 x = −516.450936 km
yo = −5995.21600 yR = −3026.5115474 y = −3026.51152 km
zo = 1719.97894 zR = 5848.117544 z = 5848.117542 km
ẋo = 2.911101130 ẋR = 3.966599 ẋ = 3.966599 km s−1

ẏo = −0.98164053 ẏR = −6.121618 ẏ = −6.121618 km s−1

żo = −7.090499220 żR = −2.754866 ż = −2.754866 km s−1

tf = 10 000 s

4R = 0.0062(m) 4v = 0.(m s−1)

Table 2. Molniya orbit.

Initial Conditions Reference Solution PC-Solution

xo = 19850.34032 xR = 19868.056545 x = 19868.056540 km
yo = −40076.985310 yR = −39990.912262 y = −39990.912261 km
zo = 5686.51314 zR = 5800.4214132 z = 5800.4214082 km
ẋo = 0.9622473922 ẋR = 0.970945 ẋ = 0.970945 km s−1

ẏo = −0.3840200243 ẏR = −0.397016 ẏ = −0.397016 km s−1

żo = −1.2806877932 żR = −1.278460 ż = −1.278460 km s−1

tf = 68 400 s

4R = 0.00726(m) 4v = 0.× 10−6(m s−1)

Table 3. Geosynchronous orbit.

Initial Conditions Reference Solution PC-Solution

xo = −14420.99601 xR = −13755.532790 x = −13755.532790 km
yo = −39621.36091 yR = −39857.2791670 y = −39857.2791670 km
zo = 0 zR = 0 z = 0 km
ẋo = 2.88923555010 ẋR = 2.906438 ẋ = 2.906438 km s−1

ẏo = −1.0515957400 ẏR = −1.003071 ẏ = −1.003071 km s−1

żo = 0 żR = 0 ż = 0 km s−1

tf = 68 400 s

4R = 0.000103817(m) 4v = 0.0(m s−1)



Motion in cylindrical coordinates: applications to J2 61

Table 4. Parabolic Orbit of zero Inclination.

Initial Conditions Reference Solution PC-Solution

xo = 10000.00 xR = −65357.0633677 x = −65357.063369 km
yo = 0 yR = 54991.369699 y = 54991.369701 km
zo = 0 zR = 0 z = 0 km
ẋo = 0 ẋR = −2.871888 ẋ = −2.871888 km s−1

ẏo = 8.9286113142 ẏR = 1.050276 ẏ = 1.050276 km s−1

żo = 0 żR = 0 ż = 0 km s−1

tf = 21 600 s

4R = 0.00189(m) 4v = 0.0(m s−1)

Table 5. Hyperbolic Orbit of zero Inclination.

Initial Conditions Reference Solution PC-Solution

xo = 2328.96594 xR = −1.898682002201× 106x = −1.898682002277× 106km
yo = 0 yR = 1.020564164530× 106 y = 1.020564164440× 106 km
zo = 0 zR = 0 z = 0 km
ẋo = 0 ẋR = −2.049040 ẋ = −2.049040 km s−1

ẏo = −0.98164053ẏR = 1.052929 ẏ = 1.052929 km s−1

żo = 0 żR = 0 ż = 0 km s−1

tf = 10 000 s

4R = 0.11831(m)4v = 0.0(m s−1)

Table 6. Hyperbolic orbit of 90o inclination.

Initial Conditions Reference Solution PC-Solution

xo = 10000.0 xR = 179.642069 x = 179.642069 km
yo = 0 yR = 0 y = 0 km
zo = 0 zR = 0 z = 0 km
ẋo = 0 ẋR = −4.33275 ẋ = −4.33275 km s−1

ẏo = 0 ẏR = 0 ẏ = 0 km s−1

żo = 9.2 żR = 4.905574600 ż = 4.90557460 km s−1

tf = 3000 s

4R = 0.00003(m) 4v = 0.0(m s−1)
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Table 7. Exo-atmospheric interceptor trajectory.

Initial Conditions Reference Solution PC-Solution

xo = −1221.14362 xR = −1210.2567225 x = −1210.256722 km
yo = 5288.41648 yR = 5274.987181 y = 5274.987181 km
zo = 3502.50807 zR = 3563.890150 z = 3563.890150 km
ẋo = 0.0192755409 ẋR = 0.197914 ẋ = 0.197914 km s−1

ẏo = 0.25453560030 ẏR = −0.521570 ẏ = −0.521570 km s−1

żo = 0.8722443619 żR = 0.354700 ż = 0.354711 km s−1

tf = 100 s

4R = 0.0(m) 4v = 0.0(m s−1)

Table 8. Long-rang ballistic missile trajectory.

Initial Conditions Reference Solution PC-Solution

xo = −3158.00000 xR = −6474.1747537 x = −6474.1747537 km
yo = −4647.00000 yR = −3206.6873396 y = −3206.687340 km
zo = 3568.00000 zR = 1079.408375 z = 1079.408375 km
ẋo = −5.7450000 ẋR = −0.529512 ẋ = −0.529512 km s−1

ẏo = −0.972000000 ẏR = 3.387221 ẏ = 3.387221 km s−1

żo = −0.89500000 żR = −3.509546 ż = −3.509546 km s−1

tf = 1000 s

4R = 0.0(m) 4v = 0.0(m s−1)
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