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Abstract. We try five different artificial neural models, four models based
on PNN (Perceptron Neural Network), and one using GRNN (Generalized
Regression Neural Network) as tools for the automated light curve analysis of
W UMa-type eclipsing binary systems. These algorithms, which are inspired
by the Rucinski method, are designed and trained using MATLAB 7.6. A
total of 17,820 generated contact binary light curves are first analyzed using a
truncated cosine series with 11 coefficients and the most significant coefficients
are applied as inputs of the neural models. The required sample light curves are
systematically generated, using the WD2007 program (Wilson and Devinney
2007). The trained neural models are then applied to estimate the geometrical
parameters of seven W UMa-type systems. The efficiency of different neural
network models are then evaluated and compared to find the most efficient
one.
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1. Introduction

Eclipsing binaries are important astrophysical tools for studying star formation,
stellar structure, in testing the theories of stellar evolution and determining var-
ious physical properties of stars. Additionally, they have been used as standard
candles to determine the size and the structure of the Galaxy (Southworth 2005,
Pietrzyski et al. 2009).

Contact binaries, also known as W UMa stars, are low mass eclipsing bina-
ries consisting of ellipsoidal components with orbital periods less than one day,
usually in the range of 0.2d < p < 0.8d. Continuous changes of brightness is one
of their light curve characteristics. These systems consist of solar type main-
sequence components which have filled their Roche lobes and share a common
outer envelope (Sukanta, Harinder 2010). W UMa systems follow period-colour-
luminosity relations, which enable reliable distance determination and play an
important role in studying the structure of the Galaxy (Rucinski, 2003).
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According to Rucinski (1973) and Lucy (1968), the temperature variations
over the surface of components have a very small impact on the shape of light
curves. Therefore, the results obtained for two definite star temperatures of
these kinds of systems could be applicable to a number of similar applications.
Henceforth, we start with one set of solar-type star temperatures. Moreover, the
brightness variations of contact binary systems of the W UMa-type are mainly
affected by geometrical causes and this is why gravity darkening effects are
small for convective envelopes and the reflection effect is not very important at
strongly oblique angles as well as the low convective albedo. Thus, the shape
of light curves in W UMa systems practically depends on three parameters, the
mass ratio, ¢, orbital inclination, i, and degree of contact, f. Accordingly, similar
to work of Rucinski (1973), we expect the Fourier cosine coefficients of the light
curves of these systems depend on these three parameters.

Nowadays, a large number of samples of EB light curves have been obtained
as byproducts of automated surveys for microlensing events. In addition, the
Hipparcos mission has provided several samples of eclipsing binaries (Perryman
et al. 1997). Other ground-based surveys have prepared EB databases ready for
analysis (Prsa et al. 2011). One could also mention Ebs discovered in Kepler
(Matijevic et al. 2012) and CoRoT (Maceroni et al. 2010) missions. Obviously,
an analysis of this overwhelming volume of astronomical data demands fully
automatic computing tools, preferably at high levels of computational efficiency
and speed. Artificial Neural Networks (ANNs), which have found wide and suc-
cessful applications in astronomy, provide such an opportunity. Examples of
successful applications of ANN algorithms in astronomy include: Galaxy clas-
sification (Molinari, Smareglia 1998), star/Galaxy discrimination (Odewahn et
al. 1992), Galaxy morphology (Goderya, Lolling 2001), estimating photometric
redshifts of sources in SDSS (The Sloan Digital Sky Survey) (Firth et al., 2003),
and light curve analysis (Devor 2005, Tamuz et al. 2006, Mazeh et al. 2006, Prsa
et al. 2008).

In what follows, five different neural models based on PNN and GRNN
algorithms are advanced for intelligent approximation of W UMa geometrical
parameters.

The outline of this paper is as follows. In section 2, we describe the data
set used for training and testing the networks. We use and compare two types
of Neural Networks in section 3. Other models are applied in sections 4-8. The
performance of the proposed models are evaluated in section 9 by applying them
to seven W UMa-type systems and comparing the results. Section 10 contains
our concluding remarks.

2. Data samples

Accurate light curves with pre-determined parameters are required to train and
test the proposed artificial neural models. To this end, WD2007 program (Van
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Hamme and Wilson 2007) was used to produce sample W UMa-type light curves.
Calculations have been performed with component temperatures around the
solar case (Tesf, = 6500°K), bolometric albedo, gravity darkening and limb
darkening coefficients of A1 = Ay = 0.5, g1 = g2 = 0.32, 1 = 22 = 0.674,
respectively. Ranges of variation of the orbital inclination angle between 30 and
90 degrees and the mass ratio between 0 and 1 were considered. In order to gen-
erate the required data for the networks’ input-outputs, we have calculated the
Fourier coefficients of the generated light curves, using the standard, truncated
cosine series with 11 coefficients

1(0) = 212 a; cos(27if). (1)

The orbital phases of samples were equally spaced with steps A = 0.01.
Therefore, the computed light curves contain 100 equidistant phase points with
the system light normalized to unity at orbital quadratures (phase 0.25 and
0.75). Only three parameters, the orbital inclination ¢, the mass ratio ¢, and
the degree of contact f, are allowed to vary in steps Ai = 0.5°, Ag= 0.05, and
Af=0.1. For this purpose, a program was written in MATLAB which produces
sample light curves by automatically running the WD2007 program and Fourier
analysis of them with 11 coefficients of equation (1). A total of 17,820 light
curves were produced and the most significant coefficients, a,,as, a4, and ag
were used as inputs in five artificial neural models. It should be noted that 80%
of data were used to train and 20% remaining to test the advanced artificial
neural models.

3. Intelligent estimation of the geometrical parameters of
W UMa systems

In what follows, various neural models are introduced to search for the most
effective evaluation of the geometrical parameters of W UMa systems. Calcu-
lations are perfomed in the MATLAB environment. It should be noted that
among the five neural models used here, models number 1 to 4 are based on
PNN and the model number 5 is based on GRNN.

3.1. NM#1: three-layer neural network

This neural model is a three-layer perceptron NN composed of 6 neurons in the
first hidden layer, 12 neurons in the second hidden layer and, finally, 3 neurons
in the output layer (which correspond to the geometrical parameters of orbital
inclination ¢, mass ratio ¢, and degree of contact f). The architecture of this
model is therefore 6:12:3. The most significant Fourier coefficients a,, as, aq,
and ag form inputs of this model. The activation functions used in the hidden
layers are sigmoid functions and in the output layer taken to be linear in order
to increase the model training rate. The maximum number of training epochs
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is set to 500. The bar charts in Fig.1-Fig.3 show the performance of this model
for estimating the geometrical parameters in terms of maximum training and
testing errors.
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Figure 1. Maximum absolute error for the evaluation of the orbital inclination in
training and testing five proposed models.

3.2. NM#2: two chain perceptron neural network

Decreasing the dimension of output is a simple method to enhance the rate and
accuracy of an ANN. Two PNNs were used to produce this model consecutively
in a way that the output of the first network (orbital inclination) is one of the
inputs of the second network. Justification of this consecutive structure depends
on the mass ratio, the degree of contact and the orbital inclination. Inputs of the
first NN are the four most significant Fourier coefficients. There are 4 neurons in
the first hidden layer, 8 neurons in the second hidden layer and 1 output neuron
corresponding to the orbital inclination. (The network configuration is 4:8:1.)
The second NN consists of five inputs, the orbital inclination (the output of
the first network) along with four greatest Fourier coefficients. This network is
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Figure 2. Maximum absolute error for the evaluation of the mass ratio in training
and testing five proposed models.

composed of 5 and 10 neurons in the first and second hidden layers respectively,
and 2 neurons in the output layers correspond to the mass ratio and degree
of contact. The activation function of neurons in different layers of two above
networks are similar to model 1. Each network is trained separately with the
rate of training decreased in comparison with the previous model for each case.
It can be seen from Fig.1-Fig.3 that the maximum training and testing errors
have decreased in comparison with the previous model, as expected.

3.3. NM#3: three chain perceptron neural networks

In this model, three chain PNNs are used. The inputs of the first network are
the four greatest Fourier coefficients with 4 neurons in the hidden layer and
1 neuron in the output layer corresponding to the orbital inclination i (i.e. a
4:1 configuration). The output of the first network along with the four greatest
Fourier coefficients enter the second network. The architecture of this network
is 7:10:1, i. e., 7 neurons in the first hidden layer, 10 neurons in the second
hidden layer, and 1 neuron in the output layer corresponding to the mass ratio.
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Figure 3. Maximum absolute error for the evaluation of the degree of contact in
training and testing five proposed models.

Determined parameters, the orbital inclination and the mass ratio, by networks
1 and 2 along with the four greatest Fourier coefficients make the inputs of the
third network. The configuration of this network is 5:10:1, i.e., 5 neurons in
the first hidden layer, 10 neurons in the second hidden layer, and 1 neuron in
the output layer corresponding to the degree of contact. With decreasing out-
put dimensions, training time of each of the mentioned networks has decreased
relative to the previous models. The bar charts of the maximum training and
testing errors are shown in Fig.1-Fig.3.

3.4. NM+#4: three chain perceptron neural networks with relative in-
puts

The geometrical structure of this model is similar to the model number 3 (com-
posed of the three chain PNN -Perceptron Neural Network), but the usage
method of Fourier coefficients as inputs of three consecutive networks is differ-
ent compared to the choices made by previous researches. In this model, the four
greatest Fourier coefficients (Rucinski, 1973) enter the networks in the following
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way: as/ao,as/as,ag/as, and a? + a3 + aj + af. The architecture of the first
network is 8:1, i.e., 8 neurons in the hidden layer and 1 neuron in the output
layer corresponding to the orbital inclination. The second network consists of 5
and 10 neurons in the first and second hidden layers and 1 neuron in the output
layer corresponding to the mass ratio. The configuration of the third network is
6 neurons in the first hidden layer, 12 neurons in the second hidden layer and
1 neuron in the output layer corresponding to the degree of contact i.e. 6:12:1.
The bar charts in Fig.1-Fig.3 show the maximum errors of the training and
testing stages in this model for the estimation of the geometrical parameters.
As compared to the previous models, the present model shows improvement.
This improvement is mainly due to the use of relative Fourier coeflicients.

3.5. MIN#5: three chain GRNN

The model employed in this section is GRNN. The inputs and outputs of these
networks are similar to the model #4. The number of train and test data used
in this model is 4672. The spread in the output of the first network, which is
the orbital inclination, is 0.06. The output of the second network is the degree
of contact with a spread parameter of 0.03. Finally, the output of the third
network is the mass ratio with a spread parameter of 0.03. The bar charts in
Fig.1-Fig.3 show the maximum errors of the training and testing processes.

4. Application to seven sample binary systems

The trained neural models described in previous sections are used to evaluate
the geometrical parameters of seven W UMa systems, AD Cnc, AB And, AC
Boo, RZ Com, VW Cep, V839 Oph, and XY Boo. The light curves of these stars
are taken from (Yang, Liu 2002, Rovithis-Livaniou, Rovithis 1981, Schieven et
al 1983, Binnendijk 1984, Niarchos 1984, Niarchos 1989, and Winkler 1977).
Fourier coefficients of these light curves together with the corresponding periods
are presented in Table 1. Estimated geometrical parameters obtained from the
proposed neural models, along with values obtained from available literature,
are reported in Table 2 to Table 8.

5. Concluding remarks

We developed new models for performing automated estimation of geometrical
parameters of W UMa-type eclipsing binaries. In order to make the algorithms
more effective and time efficient, we restricted the unknown parameters to the
orbital inclination (i), the mass ratio (¢), and the degree of contact (f), which
are believed to be the most important parameters in this type of binaries. We
proposed five NN models, four models of a PNN type and one of a GRNN
type. The sample and train light curves were synthesized using the well-known
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Table 1. The leading Fourier coefficients obtained from the light curves of seven W
UMa-type eclipsing binary systems.

system P(days)  a, as ay ag

AD Cnc 0.2827  0.882 -0.137 -0.019 -0.008
AB And 0.3318  0.825 -0.226 -0.058 -0.019
AC Boo 0.3524  0.849 -0.190 -0.420 -0.010
RZ Com 0.3385  0.826 -0.217 -0.049 -0.014
VW Cep 0.2783  0.898 -0.120 -0.020 -0.008
V839 Oph  0.4089 0.836 -0.196 -0.030 -0.009
XY Boo 0.3705  0.897 -0.124 -0.016 -0.003

Table 2. AD Cnc.

Ref. i(degree) q f
model 1 35.1 0.64 0.5
model 2 82.5 0.25 0.6
model 3 86.0 0.31 0.3
model 4 63.1 0.32 0.2
model 5 65.0 0.53 0.2
(Samec, 1989) 65.1 0.625 0.14
(Yang, Liu 2002) 65.69 0.267 0.036

(Qian et al., 2007)  65.57  0.775 0.08

Table 3. AB And.

Ref. i(degree) q f
model 1 36.6 0.68 0.5
model 2 86.4 0.44 0.1
model 3 87.2 0.81 0.8
model 4 69.5 043 0.1
model 5 81.4 0.72 0.1
(Righterink, 1973) 80.83 0.68 -

(Berthier, 1975) 86.2 0.54

(Bell, 1984) 86.6 0.56 0.24




Neural network analysis of W UMa eclipsing binaries

Table 4. AC Boo.

Ref. i(degree) q f
model 1 68.9 0.55 0.3
model 2 85.1 0.29 0.1
model 3 82.0 049 0.5
model 4 85.7 0.29 0.2
model 5 83.2 0.26 0.1
(Scheiven et al., 1983) 82.6 0.31  0.09
(Mancuso et al., 1978) 85.47 0.28 0.06
Table 5. RZ Com.
Ref. i(degree) q f
model 1 60.0 0.66 0.5
model 2 85.2 0.40 0.2
model 3 82.5 0.89 09
model 4 89.0 0.42 0.2
model 5 82.3 0.60 0.2
(He, Qian 2008) 81.40 0.44 0.2
(Binnendijk 1984) 88.4 0.48 0.72
Table 6. VW Cep.
Ref. i(degree) q f
model 1 70.0 0.35 0.1
model 2 75.0 0.17 0.5
model 3 90.0 0.16 0.2
model 4 66.9 0.25 0.2
model 5 65.2 0.58 0.2
(Pustylink, Niarchos 2000) 65.0 0.27 0.05
(Hill, 1989) 650 028 -
(Popper, 1948) - 0.35 -
(Binnendijk, 1967) 60.7 0.41 -
(Kwee, 1966) 71.54 - -
(Linnell, 1980) 69.8 - -

13
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Table 7. V839 Oph.

Ref. i(degree) q f
model 1 48.5 0.72 0.6
model 2 83.9 029 0.5
model 3 81.3 0.35 0.3
model 4 81.2 0.28 0.5
model 5 80.8 0.35 0.3
(Pazhouhesh, Edalati 2002) 80.059 0.305 0.23
(Al-Naimy ef al., 1989) - 0.68 -
(Rucinski, Lu 1999) - 0.305 -
(Lafta, Grainger 1985) 76.7 - -

Table 8. XY Boo.

Ref. i(degree) q f
model 1 39.1 0.64 0.5
model 2 78.1 0.13 0.5
model 3 74.5 0.17 0.2
model 4 69.1 0.17 0.3
model 5 70.2 0.10 0.9
(Yang et al., 2005) 69.0 0.1855 0.55
(Mc Lean, Hilditch 1983) - 0.16 -
(Awadalla, Yamasaki 1984) 69.5 0.16 -
(Binnendijk, 1971) 69.5 - -
(Winkler, 1977) 68.97 0.1818 -

WD2007 program. This method, which is basically based on techniques of Rucin-
ski (2003), works in the following way: after fitting sample light curves with a
truncated 11-coefficient Fourier cosine series, the leading terms were used to
train the neural networks. It turns out that from maximum error bar charts of
the proposed models (Figures 1-3), model #1, once trained, is able to evaluate
the orbital inclination angle with an error just under 3 degrees. In addition, for
the degree of contact which is in the range 0 — 1, the error is about 0.4. This
model is not very sensitive to the mass ratio and it is seen that the maximum
error of this parameter is approximately 0.3, or more. Model number 2 is able to
evaluate the orbital inclinations between 50 to 82.5 degrees with the maximum
error well under 6 degrees. Furthermore, this model finds the degree of contact
with the maximum error less than 0.4 and mass ratios with an error just under
0.3 except for the interval 0.55 to 1 for which the maximum error is about 0.45.
The model #3 has an error nearly 6 degrees for orbital inclinations between 55.5
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to 66, maximum error of the degrees of contact under 0.5 and mass ratios around
0.3 except for 0.95 to 1 for which it is roughly 0.45. Model #4 evaluates orbital
inclinations between 50 to 77 with the least amount of error. Furthermore, it
finds the mass ratios lower than 0.5 with an error of about 0.3 and all degrees
of contact with an error just over 0.08. For higher mass ratios, i.e. between 0.95
to 1, the error is around 0.18. Model #5 is trained to find orbital inclinations
between 55.5 to 66 degrees and 77.5 to 82.5 degrees as well. It approximates
degrees of contact lower than 0.5 with an error of nearly 0.3 and mass ratios be-
tween 0.05 to 1 as well as 0.45 to 0.8 with an error of approximately 0.25. Seven
W UMa-type eclipsing binaries AD Cnc, AB And, AC Boo, RZ Com, VW Cep,
V839 Oph, and XY Boo were solved, using the proposed trained algorithms.
It was found that the models #4 and #5 are more reliable compared with the
rest, although still more training is needed if they are to be used in automated
projects. The large error in the mass ratio is more or less natural, due to the
smaller sensitivity of the synthesized light curves to this parameter; a fact which
appears in other and more sophisticated methods of an individual light curve
analysis, too. In particular, degeneracies which result from different sets of pa-
rameters having approximately the same light curves, add to the difficulty of
obtaining unique and accurate solutions. Although the neural network results
seem to be poor at this stage, the results can be improved if more information
as inputs besides Fourier coefficients is considered. Additionally, combination
with other artificial methods may be effective: GA (Genetic Algorithm), GSA
(Gravitational Search Algorithm), PSO (Particle swarm optimization), wavelet
theory, and so on. From the observational point of view, it is also clear that
more extensive high-precision satellite data can improve the results to a good
extent.
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