
Contrib. Astron. Obs. Skalnaté Pleso 45, 89 – 98, (2015)
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Abstract. A double nature of the circumbinary matter in symbiotic systems,
i. e. the presence of H0 and H+ regions, offers an opportunity to investigate
both the properties of the wind from the donor star and the effect of radiation
from the ionizing companion onto the surrounding material.

In this contribution we explain the importance of the effect of ionization
for a proper treating of the inversion problem for the wind velocity profile. The
method allows us to obtain the models for total and neutral hydrogen column
densities and corresponding wind velocity profiles. We describe in detail the
process of modelling for the spherically symmetric wind and compare it with
simpler approaches.

The first application of our improved approach revealed that the effect of
ionization on the column density shapes is not negligible for a wide range of
orbital phases, in contrast to the assumptions in previous papers. Thus, it
implies a higher concentration of the wind matter than it was supposed before.

Key words: binaries: symbiotic – (stars): circumstellar matter – stars: winds,
outflows

1. Introduction

The scientific investigation is generally based on a set of assumptions that should
lead to reliable results. Which of them are proper to use is not always obvious.
One problem of this kind is an applicability of a qualitative estimate of the efect
of ionization on a circumstellar material in symbiotic binaries.

In these interacting systems, the neutral wind from the red giant component
is the subject of ionization by the white dwarf companion. The result is an ion-
ized region surrounding the hot companion and a conical neutral region around
the giant star (Seaquist et al., 1984). From the effect of Rayleigh attenuation
around the Ly-α line observed in eclipsing systems (Isliker et al., 1989), it is
possible to obtain the neutral hydrogen column densities nobs

H0 as a function of
the orbital phase, ϕ. Supposing that the effect of ionization on the values of nobs

H0

is negligible up to the phases, where nobs
H0 decline rapidly to zero (i. e. where the

line of sight passes only through the ionized region), we can obtain the function
for the total hydrogen column density (Dumm et al., 1999; Crowley et al. 2005).
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However, we have found that this assumption does not lead to satisfactory re-
sults and the ionization structure computation is essential for column density
modelling in these systems.

To describe the method, we introduce the inversion problem for the wind
velocity profile (WVP) solved by Knill et al. (1993) in Sec. 2 and proceed to
the derivation of the WVP formula in Sec. 3. Then, we connect the ionization
structure computation (Sec. 4) with the inversion method in Sec. 5. Discussion
and conclusions can be found in Sec. 6 and 7, respectively.

2. Inversion problem for the wind velocity profile

During the quiscent phases of symbiotic stars, the circumbinary material orig-
inates predominantly from the cool component wind. Assuming that the wind
from the giant is spherically symmetric, we can write its continuity equation in
the form

Ṁ = 4πr2NH(r)µmHv(r), (1)

where Ṁ is the mass-loss rate from the giant, r is the distance from its centre,
NH(r) the concentration of total hydrogen, µ the mean molecular weight, mH

the mass of the hydrogen atom and v(r) the velocity of the wind (i. e. WVP). If
we integrate NH(r) given by Eq. (1) along the line of sight l from the observer
(−∞) to infinity containing the WD, the column density of total hydrogen, nH,
can be expressed as

nH =
Ṁ

4πµmH

∞∫
−∞

dl

r2v(r)
. (2)

If the WVP is known, we can directly calculate nH at a given phase, since
the distances l and r depend on ϕ. However, in practice, the situation is just
opposite – we can obtain nobs

H0 from the observations, but the WVP is unknown.
So we have an inversion problem, which was solved by Knill et al. (1993). Here,
we sketch their approach to be able to derive the WVP formula in the next
section.

For a given orbital inclination i and the phase angle ϕ, the binary compo-
nents separation p projected to the plane perpendicular to the line of sight, i. e.
the so-called impact parameter b, can be expressed as

b2 = p2(cos2 i+ sin2 ϕ sin2 i), (3)

and we can thus rewrite Eq. (2) as

nH(b) = a

∞∫
b

dr√
r2 − b2rv(r)

, (4)



On the effect of ionization on the circumbinary material in symbiotic systems 91

where

a =
2Ṁ

4πµmH
. (5)

We can look at this integral as the integral operator A acting on the function

g(r) =
a

rv(r)
. (6)

Since A is a linear operator, it can be represented by a matrix. Moreover, A is the
operator of the Abel type and in the form given by Eq. (4) can be diagonalized.
Knill et al. (1993) found its eigenfunctions

ψi(r) = r−i, (7)

where i ≥ 1. The corresponding eigenvalues λi determine the diagonalizated
form of the operator matrix. Then, if we suppose that the function of our inter-
est, g(r), is analytical on the interval < 0,∞) and express it by the convergent
Taylor series

g(r) =

∞∑
i=1

gir
−i, (8)

the action of the operator A on g(r) can be schematically written as

A : g(r) =

∞∑
i=1

gir
−i 7−→ n(b) =

∞∑
i=1

nib
−i. (9)

The coefficients in the series n(b) (defined also on < 0,∞)) are simply the
coefficients in g(r) series multiplied by eigenvalues,

ni = λigi. (10)

The action of inverted operator A−1 is straightforward,

A−1 : n(b) =

∞∑
i=1

nib
−i 7−→ g(r) =

∞∑
i=1

ni
λi
r−i. (11)

However, the inverted operator is unbounded. One way to find it out is employ-
ing the fact that the eigenvalues of Abel’s operator A create the monotonously
decreasing series,

i = 1 λ1 =
π

2
,

i ≥ 2 λi =
π

2(i− 1)λi−1
. (12)

The solution of the problem is to restrict the inversion to the proper linear space
of functions. This is made by truncating the infinite series at i for which λi is
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still not too small. It means that we will work with finite sums. One of them
represents the column density (the truncated n(b))

n(K)(b) =

K∑
i=1

n
(K)
i b−i, (13)

where coefficients n
(K)
i can be obtained by fitting the observed nobs

H0 values (see
Sec. 5). Then, by the action of the operator A−1 on nK(b), we obtain the cor-
responding function gK(r) as

g(K)(r) =

K∑
i=1

n
(K)
i

λi
r−i. (14)

3. The wind velocity profile formula

For the sake of simplicity, we will no longer use the upper index ”(K)” for finite
sums labeling, since the infinite sums will not enter the next text. Using the
inversion method provides us with coefficients gi, i = 1, ...,K, which are in the
relation with the WVP according to Eq. (6) as

g(r) =
a

rv(r)
= g1

1

r
+ g2

1

r2
+ ...+ gK

1

rK
, (15)

and thus the WVP is given by the formula (see Eq. (25) of Knill et al., 1993),

v(r) =
rK−1

gK + gK−1r + ...+ g1rK−1
. (16)

Further, the column density (13) can be well fitted by a two-term expression,
as suggested by Dumm et al. (1999), i.e.

ñH(b) =
n1

b
+
nK
bK

, (17)

which also represents a good approximation of the original nH(b) function (4).
The first term dominates for large values of b, while the second one for small b.
Inverted Abel’s operator (11) transforms this function into

a

rv(r)
=

n1

λ1r
+

nK
λKrK

. (18)

For r →∞,
a

rv(r)
→ n1

λ1r
and v(r)→ v∞, where v∞ is the terminal velocity of

the wind, we get a relation
a

v∞
=
n1

λ1
, (19)
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and thus, using Eq. (18), the WVP (16) has the form

v(r) =
v∞

1 + ξr1−K , (20)

where ξ =
nKλ1

n1λK
with λ1 and λK given by relation (12). The parameter K

in Eq. (20) shows how rapidly the wind accelerates (Fig. 1) and ξ determines
mainly the distance from the giant surface at which the acceleration starts (Fig.
2). Thus, Eq. (20) is sufficiently general to describe a great variety of possible
velocity profiles.
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Figure 1. WVPs given by Eq. (20) for ξ = 102 cmK−1 and several values of K that

are given at the labels next to the corresponding curves; Rg is the red giant radius.

If there was no ionized region, the parameters n1, nK and K could be ob-
tained by fitting the measured nobs

H0 data with Eq. (17), and thus the WVP in
the form of Eq. (20). However, since the H0 column densities cover only part of
the red giant wind and the WVP describes driving of the wind at any distances,
in both the ionized and neutral regions, the next step is the ionization structure
determination.

4. Effect of the ionization on H0 column density

4.1. Ionization structure

In symbiotic systems, a thin region called the ionization boundary is located
between the regions of neutral and ionized hydrogen, where a very rapid transi-
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Figure 2. Same as in Fig. 1, but for K = 10 and several values of ξ [cmK−1].

tion between completely neutral and ionized material occurs at a small distance
(Schwank et al., 1997; Crowley, 2006). In other words, at the distance sϕ (Fig.
3) from the white dwarf to the ionization boundary, the number of hydrogen
ionizations by photons generated by the hot star is equal to the number of re-
combinations, i. e. the wind cannot be ionized at the distances from the dwarf
greater than sϕ. Thus, the equality between ionizing photons emitted in a small
angle around the direction ϑ (Fig. 3) and recombinations in this angle, deter-
mines the position of the ionization boundary, sϕ. The equilibrium condition
can be expressed as (Nussbaumer & Vogel, 1987)

Lph
∆ϑ

4π
=

∆ϑ

4π

sϕ∫
0

NH+(s)Ne(s)αB(H, Te)4πs2ds, (21)

where Lph is the number of photons capable of ionizing hydrogen emitted spher-
ically symetric from the hot star per second, s is the distance from the hot star,
NH+ and Ne are the concentrations of hydrogen ions and electrons, respectively,
and αB is the total hydrogen recombination coefficient for recombinations other
than to the ground state (i. e. the case B).

Then, we consider Ne = NH = NH+ in the ionized region. If we suppose that
Te is constant throughout the nebula and thus also αB, condition (21) can be
expressed as

f(s, ϑ) = XH+, (22)
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Figure 3. Scheme of the ionization structure projected to the orbital plane, the thick

solid line represents the ionization boundary between the neutral and ionized wind

region, ϑ is the angle between the line of sight l and the binary axis and other parame-

ters are introduced in Sect. 2. The figure is adapted according to Skopal & Shagatova

(2012).

Figure 4. The angles ϕ and ϑ in three dimensions.

(see Seaquist et al., 1984 or Nussbaumer & Vogel, 1987) where XH+ is the
ionization parameter,

XH+ =
4πpLph

αB(H, Te)

(
µmHv∞

Ṁ

)2

, (23)

and

f(s, ϑ) = p

sϕ∫
0

s2

(s2 + p2 − 2sp cosϑ)
2

v2
∞

v2(
√
s2 + p2 − 2sp cosϑ)

ds, (24)
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which was derived using the continuity equation (Eq. (1)) and the expression
for r (see Fig. 3),

r2 = s2 + p2 − 2sp cosϑ. (25)

By solving equation (22) we get the value sϕ for a given velocity profile of the
giant’s wind, whose particles are subject to ionization.

4.2. Column density of neutral hydrogen

The column density of the neutral hydrogen nH0 is given by integration of
the hydrogen concentration from the observer to the position of the ionization
boundary lϕ (see Fig. 3),

lϕ =
√
p2 − b2 − sϕ, (26)

thus, we have an equation

nH0 =
a

2

lϕ∫
−∞

dl

r2v(r)
. (27)

Using the parameter b (Eq. (3)), we obtain

nH0(b) =
a

2

lϕ(b)∫
−∞

dl

(l2 + b2)v(
√
l2 + b2)

, (28)

which we use for numerical calculations.

5. Process of modelling

The main goal of the column density modelling is to obtain the values of param-
eters n1, nK and K, which determine the column density of the total hydrogen
ñH(b) (Eq. (17)) and also the WVP in form (20). One more parameter, XH+,
defines the ionization structure of the binary (Sec. 4.1). We found empirically
the reasonable intervals for values of all 4 parameters to restrict the generation
of its random values at the start of each loop of the iteration procedure. We
used the length units of Rg to avoid very high values of n1 and nK (≈ 10100).
One iteration loop is depicted schematically in Fig. 5.

With a given set of the random values of 4 parameters, the first step is to
proceed from Eq. (17) for ñH(b) to Eq. (20) for v(r), i. e. to perform the inversion
of Abel’s operator. Then, with a given v(r), we compute the position of the
ionization boundary sϕ (Eq. (22)) and obtain lϕ(b), its distance in the coordinate
l (Eq. (26), Fig. 3). Finally, the corresponding nH0(b) model is computed and
given a value of the reduced χ-squared sum, χ2

red.
Having at hand a set of models, the best model can be found using the

condition of the least square method.
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Figure 5. One iteration loop in the process of the column densities modelling.

6. Discussion

The idea that the inversion method for the column density function can be
adapted to the situation where the compact star ionizes a fraction of the neu-
tral wind from the companion, was already pointed out by Knill et al. (1993).
However, up to now, none of the applications of the inversion method have
calculated the exact integral for H0 column density running from −∞ to the
position of the neutral wind region boundary. It was assumed that the effect of
ionization on the observed H0 column densities is negligible for a wide range of
orbital phases, which extends from the inferior conjunction of the giant up to the
phases with corresponding lines of sight almost approaching to the ionization
boundary (Dumm et al., 1999; Pereira et al., 1999; Crowley et al., 2005). Here,
we presented the method that is able to test if such a simplified approach leads
to the satisfactory column density models, by including the ionization effect into
the inversion method.

Recently, the first results of this method were obtained for EG And (Sha-
gatova & Skopal, 2015) and can directly be compared with a simpler approach
of Crowley et al. (2005). One can clearly see that the curve for the total hy-
drogen column density diverges from the observed neutral hydrogen column
density data for b >∼ 1.7Rg (Fig. 1 left in Shagatova & Skopal, 2015) for our
method, while for a qualitative estimate of the effect of ionization it diverges
only from b >∼ 3.3Rg (Fig. 7 left in Crowley et al., 2005). Thus, the difference is
not negligible and, moreover, a lower position of the curve for the total hydrogen
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column density in the qualitative treatment corresponds to smaller values of the
mass-loss rate for the spherically symmetric wind.

7. Conclusions

The method described in this paper represents a new approach to the inversion
method of Knill et al. (1993) by including a computation of the ionization struc-
ture of the symbiotic binary. It allows us to obtain more precise models for the
total and neutral column density dependence on orbital phase and wind velocity
profiles than previous approaches. The column density models are given by a
set of four parameters that can be determined via the least squares analysis
(Sec. 5).

Its first application (Shagatova & Skopal, 2015) shows that including the
effect of ionization, in the way presented in this paper, corresponds to higher
calculated values of the total hydrogen column densities in comparison with a
qualitative approach (e. g. Crowley et al., 2005). Thus, higher column densities
values have to be a result of higher average concentrations of the wind along
corresponding lines of sight.
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