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Abstract. The fundamental stages of development of the polytropic theory
of stars with axial rotation are considered as a generalization of the Lane-
Emden theory. The solution of the differential equilibrium equation for the
polytropic star model with index n = 1 and axial rotation with the angular
velocity ω is presented in the form of infinite series of the Legendre polynomials
and the spherical Bessel functions. Two variants of the approximate solution
in the form of the finite number of terms are proposed. Integration constants
were found in a self-consistent way using the integral form of the equilibrium
equation and the iteration numerical method. Dependence of the geometrical
and physical characteristics of the model on the dimensionless angular velocity
Ω = ω(2πGρc)

−1/2 (where ρc is the density in the centre) is analyzed. A com-
parison with the results of other authors is performed. The obtained critical
value of the angular velocity Ωmax, when an instability occurs is smaller than in
other works (Chandrasekhar, 1933; James, 1964, and et al.). The inverse prob-
lem is also considered – a determination of the polytropic model parameters
for individual stars based on the solution of the equilibrium equation accord-
ing to the values of their masses and radii, which are known from observations.
In particular, the model parameters for the star α Eri, as well as a similar
“class” of the star models of types O5÷G0, were determined. The solution of
the equilibrium equation for the polytrope n = 1 + δ (where δ is a small value)
is obtained using the method of perturbation theory.

Key words: stars: rotation – stars: interiors – stars: fundamental parameters
– stars: statistics – PACS number(s): 97.20.-w

1. Introduction

The principles of the polytropic theory of solar-like stars were created by the
works of Lane (1870), Emden (1907), Fowler (1930), Eddington (1926) and
other researchers in the first half of the last century. This theory is based on the
equilibrium equation of a star with the polytropic equation of state

P (r) = Kρ1+1/n(r), (1)
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where P (r) is the pressure at the radius-vector r, ρ(r) is the local density of
matter, and K and n are constants. It yields a determination of main relations
between the polytrope characteristics and describes stability of stars. An idea
of the polytropic dependence between the pressure and density is successfully
used for a construction of the cold degenerate dwarfs theory (Chandrasekhar,
1931).

The axial rotation is a factor that is common for various celestial objects –
the stars of main sequence, pulsars, white dwarfs and black holes. The equilib-
rium equation of polytrope without rotation with spherical symmetry of matter
distribution is an ordinary differential equation of the second order, which is
known as the Lane-Emden-Fowler equation. The equilibrium equation for the
polytropic model with axial rotation in a general case (for an arbitrary value
of the index n) is a non-linear differential equation of second order in partial
derivatives. The exact solution of the equation is known only for the particular
case n = 0, from which the Maclaurin formula is obtained (see Chandrasekhar,
1969) that determines the relations between the angular velocity and eccentric-
ity of a rotating homogeneous ellipsoid.

To evaluate the influence of rotation on the Sun’s characteristics, Milne
(1923) found an approximate solution of the equilibrium equation for n = 3 for
the case of a small angular velocity, by linearizing the equation. Such approxi-
mation corresponds to the first order of perturbation theory. Using the method
of Milne (1923), Chandrasekhar (1933) obtained the solutions with the help of
a numerical integration for the polytropes with indices n = 1.0, 1.5, 2.0, 2.5, 3.0.
Kopal (1937) pointed out that in the particular case of n = 1 with an axial sym-
metry the equilibrium equation allows for a separation of variables. He found
a set of fundamental solutions in the form of products of the Legendre polyno-
mials and the spherical Bessel function of the first kind. However, the question
of finding a general solution, by the given boundary conditions, Kopal did not
consider.

James (1964) went beyond a small rotational velocity approximation. He
found an approximate solution for the polytropes with indices n = 1.0, 1.5, 2.0,
2.5, 3.0 and calculated dependence of the polytrope characteristics on the an-
gular velocity in the interval 0 ≤ ω ≤ ωmax(n). Unfortunately, the solutions
were not presented in the publication, which makes it impossible to analyze
their dependence on the angular velocity as well as to use the solutions for the
calculation of other characteristics.

In the work of Monaghan & Roxburgh (1965) there is generalized the Milne –
Chandrasekhar approach by a more accurate description of the outer polytrope
region. Aiming to find integration constants (Milne, 1923; Chandrasekhar, 1933)
and also to determine the fitting parameters (Monaghan & Roxburgh, 1965),
the authors applied the traditional in the stellar surface theory approximation,
which is based on the usage of the general multipole form of potential, cre-
ated by an unknown distribution of matter in the inner part of the star. The
common characteristic of these works is the first approximation relative to ro-
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tation influence. Therefore integration constants and fitting parameters do not
depend on the angular velocity, but only on the polytropic index (Milne, 1923;
Chandrasekhar, 1933; Monaghan & Roxburgh, 1965). The partial solution of
the equilibrium equation which is considered by Caimmi (1980) at n = 1, im-
proves Chandrasekhar’s solution (Chandrasekhar, 1933) by the determination
of integration constants numerically.

In spite of the long research history, the problem of the calculation of charac-
teristics of the polytropic model remains relevant and has both methodological
and applied importance. It should be mentioned recent works of Kong et al.
(2015) and Knopik et al. (2017), in which the computer methods were used to
calculate the characteristics of individual stars based on the polytropic model
at n = 1. The polytrope model is a good zero approximation for the calculation
of the characteristics of massive dwarfs (James, 1964; Vavrukh et al., 2010). It
can be used to describe neutron stars, circumstellar disks, gas giant planets, and
in the theory of stability and pulsation of stars.

In the work of Vavrukh et al. (2019) it is shown that the finding of the
solutions of the equilibrium equation for the polytropes with rotation more ac-
curately requires the usage of a multi-component expansion for the Legendre
polynomials. In this case the correct definition of integration constants is pro-
vided by the integral form of the equilibrium equation, which is equivalent to
the explicit calculation of gravitational potential at some point of polytrope by
the known solution of the equilibrium equation.

The model with n = 1 plays the role of the standard in the polytropic the-
ory. Finding a solution of a linear inhomogeneous differential equation of the
second order with partial derivatives is a simpler problem than finding solutions
of a non-linear equation at n > 1. Therefore, with polytrope with n = 1 there is
tested a new method of finding the equilibrium equation solutions, which can be
generalized later for the model with an arbitrary n. The problem of calculation
of the polytropic characteristics with n = 1 has independent meaning, as an
example of the problem that allows for solutions with high precision. The max-
imal value of the angular velocity for this model is quite large (Ωmax = 0.245),
therefore it is suitable for the calculation of the characteristics of the individual
observed stars with rapid axial rotation.

The purpose of our work is to obtain the correct analytical approximation of
the solution of the equilibrium equation for the polytrope with n = 1 and solid-
body rotation. In this way we simultaneously use differential and integral forms
of the equilibrium equation (section 2). Two representations of the solution of
the differential equation in the form of the infinite series, as well as two basic
approximations in the form of the finite number of terms, are shown in section 3.
The self-consistent method of the calculations of integration constants based on
the integral equation is described in section 4. The results of calculations of the
polytrope characteristics dependence and integration constants on the angular
velocity are shown in section 5. In section 6 it is shown the way how the solution
of the equilibrium equation of the polytrope with n = 1 can be used to find an
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approximate solution at n = 1 + δ, where δ is a small value. The application of
the found basic approximations and their linear combinations is considered in
section 7, where the polytropic model is built for the star α Eri and models for
the stars of classes O5÷G0.

2. The two forms of the equilibrium equation

In the presence of rotation the hydrostatic equilibrium equation is rewritten in
the non-inertial (rotating) coordinate system in the form (Chandrasekhar, 1933)

∇P (r) = −ρ(r) {∇Φgrav(r) +∇Φc(r)} , (2)

where

Φgrav(r) = −G
∫
dr

′
ρ(r

′
)

|r− r′ |
(3)

is the gravitational potential inside the star and Φc(r) is the centrifugal poten-
tial. If the axis Oz of the spherical coordinate system coincides with the axis of
rotation, then

Φc(r) = −1

2
ω2r2 sin2 θ. (4)

Here θ is the polar angle and ω is the angular velocity of reference frame, which
is considered as constant.

Substituting the expressions (1) for n = 1, (3) and (4) in Eq. (2) and taking
the divergence, the equilibrium equation is obtained in the form of the differen-
tial equation that determines the density distribution,

2K∆ρ(r) = −4πGρ(r) +
1

2
ω2∆(r2 sin2 θ). (5)

In the presence of axial symmetry (ρ(r) = ρ(r, θ)) the Laplace operator is written
in the form

∆ = ∆r +
1

r2
∆θ, ∆r =

1

r2
∂

∂r

(
r2
∂

∂r

)
,

∆θ =
∂

∂t
(1− t2)

∂

∂t
,

(6)

at t = cos θ, therefore ∆ (r2 sin2 θ) = 4. Introducing the dimensionless radial
coordinate ξ = r/λ, as well as using the substitution

ρ(r, θ) = ρc Y (ξ, θ), (7)

where ρc is the density of matter in the stellar centre, we transform Eq. (5) to
the dimensionless form

∆ξ,θ Y (ξ, θ) = Ω2 − Y (ξ, θ). (8)
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Herewith the scale λn, the dimensionless angular velocity Ω and the Laplacian
operator are determined by the relations

λ =

(
K

2πG

)1/2

, Ω =
ω

(2πGρc)1/2
,

∆ξ,θ = ∆ξ +
1

ξ2
∆θ, ∆ξ =

1

ξ2
∂

∂ξ

(
ξ2
∂

∂ξ

)
.

(9)

According to definition (7), Y (0, θ) = 1 and the condition ∂Y (ξ, θ)/∂ξ = 0 at
ξ = 0 corresponds to the solutions regular in the vicinity of ξ = 0. At large values
of Ω the non-monotonous dependence Y (ξ, θ) on the variable ξ in the equator
region, as well as the leakage of matter, are possible. The stability conditions of
stars in the equatorial region

Y
(
ξ,
π

2

)
= 0,

∂

∂ξ
Y
(
ξ,
π

2

)
= 0 (10)

determine the maximal permissible value of the parameter Ωmax and the cor-
responding value of the equatorial radius ξmax

e . According to definition (7),
only positive solutions of Eq. (8) have a physical meaning, which is the two-
dimensional differential equation of the second order in partial derivatives with
a dimensionless parameter Ω ≥ 0.

Eq. (8) is similar to the Poisson equation, therefore it can formally be consid-
ered as the equation for dimensionless gravitational potential, which is created
by the dimensionless density distribution (4π)−1 · {Ω2−Y (ξ, θ)}. In this regard,
this equation can be rewritten in the integral form

Y (ξ, θ) = 1 +

∞∑
l=1

C2l ξ
2lP2l(t)−

1

4π

∫ {
Ω2 − Y (ξ

′
, θ

′
)
}
Q(ξ, ξ

′
) dξ

′
, (11)

where C2l are integration constants, P2l(t) are the Legendre polynomials of the
2l-th order, the kernel of the equation is

Q(ξ, ξ
′
) = |ξ − ξ

′
|−1 − (ξ

′
)−1, (12)

and the integration is performed over the stellar volume. Taking into account
the identity

∆ξ,θ {ξl Pl(t)} = 0, (13)

it is easy to verify that Eqs. (8) and (11) are equivalent.
The gravitational potential inside a star (3) is related to dimensionless po-

tential

Φ(ξ) = − 1

4π

∫
Y (ξ

′
)

|ξ − ξ
′ |
dξ

′
(14)

as follows
Φgrav(r) = 4π G λ2ρc Φ(ξ). (15)
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Rewriting Eq. (2) in dimensionless variables, we obtain the relation

∂

∂ξ

{
Φn(ξ, θ) + Y (ξ, θ)

}
=

Ω2

3
ξ

{
1− P2(t)

}
. (16)

Eq. (11) can be represented in terms Y (ξ, θ), Φn(ξ, θ), namely

Y (ξ, θ)+{Φ(ξ, θ)− Φ(0, 0)}=1+
∑
l=1

C2lξ
2lP2l(t)+Ω2

{
Φ0(ξ, θ)−Φ0(0, 0)

}
,(17)

where Φ0(ξ, θ) determines expression (14) at Y (ξ
′
) ≡ 1. This allows us to convert

Eq. (16) to a form

∂

∂ξ

{∑
l=1

C2l ξ
2l P2l(t) + Ω2 [Φ0(ξ, θ)− Φ0(0, 0)]

}
= ξ

Ω2

3

(
1 − P2(t)

)
. (18)

The difference of potentials Φ0(ξ, θ) − Φ0(0, 0) is easy to calculate using an

expansion in the series of kernel Q(ξ, ξ
′
) for the Legendre polynomials and

performing integration over the variable 0 ≤ ξ′ ≤ ξ0(t), where ξ0(t) is the root
of the equation Y (ξ, θ) = 0. It determines the equation of the polytrope surface.
In this way we find that

Φ0(ξ, θ)− Φ0(0, 0) = − 1

4π

∫
dξ

′
Q(ξ, ξ

′
) =

ξ2

6
+
ξ2

2
P2(t)I2 +

∞∑
l=2

ξ2lP2l(t)I2l,

I2 = −
1∫
−1

P2(t′) ln ξ0(t′)dt′, I2l =
1

4
(l − 1)−1

1∫
−1

P2l(t
′)(ξ0(t′))2−2l) dt′ at l ≥ 2.

(19)

We note that I2l = 0 at l ≥ 2, where the star is approximated by the rotational
ellipsoid (Chandrasekhar, 1969). Substituting expression (19) into Eq. (18), we
get the equality

(2C2 + Ω2I2)P2(t) +

∞∑
l=2

(C2l + Ω2I2l)2lξ
2l−2P2l(t) = −Ω2

3
P2(t). (20)

Given the orthogonality of the Legendre polynomials, it follows that

C2 = −Ω2

6

(
1 + 3I2

)
, C2l = −Ω2I2l at l ≥ 2. (21)

Therefore, Eq. (11) can be written in the form

Y (ξ, θ) = 1 +
Ω2ξ2

6

(
1− P2(t)

)
+

1

4π

∫
Y (ξ

′
, θ

′
)Q(ξ, ξ

′
) dξ

′
. (22)
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Eqs. (8) and (22) are the closed system, which do not require any additional
information to determine the general solution Y (ξ, θ) that corresponds to the
given boundary conditions. We solve this system in a self-consistent way, thus we
achieve the correct description of the polytrope surface, in contrast to the works
of Milne (1923), Chandrasekhar (1933), and Monaghan & Roxburgh (1965), with
an approximate description of the peripheral region.

In our previous work (Vavrukh et al., 2019) the approximation is accepted,
according to which the polytrope surface is the surface of a rotational ellipsoid
with eccentricity e and the equatorial radius ξe, which were determined self-
consistently. In this approximation (Vavrukh et al., 2019)

ξ0(t) = ξe

{
1 + t2

e2

1− e2

}−1/2
, I2 = I2(e) =

2

3
+

1− e2

e2
−
√

1− e2
e3

arcsin e.

(23)
However, such an approximation is only one of the possible calculation vari-

ants.

3. The solution of the equilibrium equation

Using the substitution

Y (ξ, θ) = Ω2

{
ϕ(ξ, θ) +

ξ2

4
sin2 θ

}
(24)

Eq. (8) takes the form

∆ξ,θ ϕ(ξ, θ) + ϕ(ξ, θ) = −1

4
ξ2 sin2 θ, (25)

which does not contain parameter Ω2. In the corresponding homogeneous equa-
tion the variables are separated and its general solution reads

ϕ(ξ, θ) =

∞∑
l=0

α2l j2l(ξ) P2l(t), (26)

where j2l(ξ) is the spherical Bessel function of the first kind (Abramowitz & Ste-
gun, 1970) and α2l are integration constants. The particular solution of Eq. (25)
we find in the form

ϕp(ξ, θ) =

∞∑
l=2

b2l
[
ξ sin θ

]2l−2
. (27)

Using the equality

∆ξ,θ {ξ sin θ}2l = (2l)2{ξ sin θ}2l−2, (28)
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we see that

b2l = (−1)l−1 2−2l(l!)−2, (29)

therefore
1

4
ξ2 sin2 θ + ϕp(ξ, θ) = 1− J0(ξ sin θ), (30)

where J0(z) is the Bessel function of the zero order (Abramowitz & Stegun,
1970). From Eq. (8) for the function Y (ξ, θ) it follows the asymptotic behavior

Y (ξ, θ) ⇒ 1− ξ2

6
+

Ω2ξ2

4
sin2 θ + . . . (31)

at ξ → 0; as a result, the general solution of Eq. (8), which corresponds to the
boundary conditions at ξ = 0, can be represented in the form

Y (ξ, θ) = j0(ξ) + Ω2

{
1− J0(ξ[1− t2]1/2) +

∞∑
l=1

α2l j2l(ξ) P2l(t)

}
. (32)

The function J0(ξ[1 − t2]1/2) has an expansion in the form of the Legendre
polynomials (t = cos θ) and spherical Bessel functions (Abramowitz & Stegun,
1970)

J0
(
ξ[1− t2]1/2

)
=

∞∑
l=0

Dl j2l(ξ) P2l(t),

Dl = (4l + 1)(2l)! 2−2l (l!)−2.

(33)

Thereby the solution can be represented in the form of a series for the orthogonal
functions

Ỹ (ξ, θ) = j0(ξ) + Ω2

{
1− j0(ξ) +

∞∑
l=1

a2l j2l(ξ) P2l(t)

}
, (34)

where a2l are new integration constants, which are different from α2l. Such
representation is proposed by Vavrukh et al. (2019). In the practical calculations
we restricted ourselves to the terms 1 ≤ l ≤ 3, and integration constants a2l are
determined from Eq. (22).

Formally, taking into account an infinite number of series terms in the form
of the Legendre polynomials, representations (32) and (34) are completely equiv-
alent. Functions (32) and (34) are the two representations of the exact general
solution of solutions (8) and (22), which correspond to boundary conditions
(10). However, in the practical calculations it is necessary to account for a small
number of terms. In this case representations (32) and (34) are no longer equiv-
alent. This is due to the features of the angular dependence of the function
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J0
(
ξ[1− t2]1/2

)
:

lim
t→±1

J0
(
ξ[1− t2]1/2

)
= 1; lim

t→0
J0
(
ξ[1− t2]1/2

)
= J0(ξ);

1

2

+1∫
−1

J0
(
ξ[1− t2]1/2

)
dt = j0(ξ).

(35)

Thereby the angular dependence of the function

Y (ξ, θ) = j0(ξ) + Ω2

{
1− J0(ξ[1− t2]1/2) +

l0∑
l=1

α2l j2l(ξ) P2l(t)

}
, (36)

and the function

Ỹ (ξ, θ) = j0(ξ) + Ω2

1− j0(ξ) +

l̃0∑
l=1

a2l j2l(ξ) P2l(t)

 (37)

are different approximations of the exact solution of Eqs. (8) or (22). Expres-
sion (37) with l̃0 = 1, which is considered by Caimmi (1980), is the roughest
of all possible approximations and exactly coincides with Chandrasekhar’s ap-
proximation. The term 1− J0(ξ[1− t2]1/2) is the result of selective summation
of the infinite series in formula (37). This term reflects the natural asymmetry
of the solution in the polar and equatorial directions. First of all we consider
the case of the calculation based on function (32), which is different from all
the representations of the solution of the equilibrium equation for the polytrope
with n = 1, which are used by other authors.

We also note that the linear combination

aY (ξ, θ) + bỸ (ξ, θ) (38)

at a + b = 1 is also an approximation of the exact solution, which corresponds
to the boundary conditions at ξ = 0.

4. The calculation of integration constants

Substituting expression (36) into Eq. (22) and taking into account that j0(ξ)
satisfies Eqs. (8) and (22) at Ω = 0, as well as the fact that J0(ξ[1− t2]1/2) is a
particular solution of Eq. (25), we obtain the relation

l0∑
l=1

α2l j2l(ξ) P2l(t) = −P2(t)
ξ2

6

{
1 + 3I2

}
+

+
1

4π

l0∑
l=1

α2l

∫
j2l(ξ

′
) P2l(t

′
)Q(ξ, ξ

′
) dξ

′
.

(39)
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We will perform integration over variables ξ
′
, t

′
, ϕ

′
, expanding the kernelQ(ξ, ξ

′
)

in a series of the Legendre polynomials

1

4π

l0∑
l=1

α2l

∫
j2l(ξ

′
) P2l(t

′
)Q(ξ, ξ

′
) dξ

′
=

l0∑
l=1

α2l

4l + 1

P2l(t)

ξ1+2l

ξ∫
0

(ξ
′
)2+2lj2l(ξ

′
)dξ

′
+

+
1

2

l0∑
l=1

α2lP2l(t)ξ
2l

+1∫
−1

P 2
2l(t

′
)dt

′

ξ0(t
′
)∫

ξ

j2l(ξ
′
)(ξ

′
)1−2ldξ

′
+

+
1

2

l0∑
l,m=1

α2lP2m(t)ξ2m(1− δm,l)
+1∫
−1

P2l(t
′
)P2m(t

′
)dt

′

ξ0(t
′
)∫

ξ

j2l(ξ
′
)(ξ

′
)1−2mdξ

′
,

(40)

where δn,l is the Kronecker symbol and ξ0(t
′
) is the root of the equation

j0(ξ0) + Ω2

{
1− J0(ξ0[1− t2]1/2) +

l0∑
l=1

α2l j2l(ξ0) P2l(t)

}
= 0. (41)

Integration over the variable ξ
′

is performed in an analytical form using
the equation for the function j2l(ξ) and recurrent formulae for these functions
(Abramowitz & Stegun, 1970). Comparing the coefficients of the same power
ξ2lP2l(t) on the left- and right-hand sides of expression (40), we obtain the
system of linear equations for the constants α2l

α2S2,2 + α4S2,4 + . . .+ α2l0S2,2l0 = −1

6

(
1 + 3I2

)
;

α2S4,2 + α4S4,4 + . . .+ α2l0S4,2l0 = 0;

...

α2S2l0,2 + α4S2l0,4 + . . .+ α2l0S2l0,2l0 = 0.

(42)

The coefficients S2l,2l, S2m,2l, . . . are determined by the expressions

S2l,2l =

1∫
0

P 2
2l(t) ξ

1−2l
0 j2l−1(ξ0) dt;

S2m,2l=−
1∫

0

P2m(t)P2l(t)

{ ξ0∫
ξ1

(ξ′)1−2mj2l(ξ
′)dξ′

}
dt,

(43)

where ξ0 ≡ ξ0(t). At the same time the non-diagonal coefficients S2m,2l at m 6= l
do not depend on the lower limit of integration over the variable ξ′ and are also
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reduced to the single integrals, for example

S2,4 =

1∫
0

P2(t)P4(t) ξ−10 {j3(ξ0) + 2ξ−10 j2(ξ0)} dt;

S2,6 =

1∫
0

P2(t)P6(t) ξ−10 {j5(ξ0) + 4ξ−10 j4(ξ0) + 8ξ−20 j3(ξ0)} dt,

(44)

etc. In the limit of small angular velocities ξ0(t) can be replaced by the Emden
surface ξ1 = π, therefore I2 = 0 (see form. (19))

S2,2 ⇒ (5ξ1)−1j1(ξ1) = (5ξ21)−1, α2 = α̃2 = −5

6
π2, α2l ⇒ 0 at l ≥ 2. (45)

This limit corresponds to the Milne – Chandrasekhar approximation (Milne,
1923; Chandrasekhar, 1933).

The root of Eq. (41), ξ0(t), depends on the angular velocity, therefore the
constants α2l are also the functions of the parameter Ω. The procedure for
determining the constants α2l is performed in two stages. At the first stage
of integration over the polytrope volume we approximate its surface by the
surface of some auxiliary rotational ellipsoid with the eccentricity e(Ω) and the
equatorial radius ξe(Ω), and ξ0(t) we determine from formula (23). The root of
the equation at t = 1 determines the polar radius ξp(Ω) ≡ ξ0(1|Ω) and the root
at t = 0 yields the equatorial radius ξe(Ω) ≡ ξ0(0|Ω) at 0 ≤ Ω ≤ Ωmax. The
equation

e2(Ω) = 1−
[
ξ0 (1|Ω)

ξ0 (0|Ω)

]2
(46)

determines dependence of the eccentricity e(Ω) on the angular velocity. The
system of Eqs. (42) – (46), in which Ω is an independent parameter, determines
the dependencies e(Ω), ξe(Ω), ξp(Ω) and α2l(Ω) on the angular velocity. The
system can be solved numerically by the method of successive approximations.
The algorithm of successive iterations is as follows. At the initial value Ω1 � 1
in the zero approximation values of ξe(Ω) = ξp(Ω) we determine from Eq. (42)
at α2 = α̃2, α4 = 0. Next we find the values S2l,2l, S2m,2l and solve system (42).
In the next iteration we find ξp(Ω) and ξe(Ω) from Eq. (41) with the help of
coefficients α2l found in a previous step and calculate the eccentricity e(Ω). We
calculate again S2l,2l, S2m,2l and etc.

At the second stage of calculation, having already approximately calculated
coefficients α2l, we determine ξ0(t) from Eq. (41) and continue the iteration
process. It helps us to determine integration constants α2l more precisely and
decrease the calculation errors. The approximation of the polytrope surface
by the rotational ellipsoid surface at the first stage allows us to speed up the
iteration process. Such approximation has errors, because of the polytrope sur-
face is slightly different from the rotational ellipsoid surface. But at the second



Exact solution for the rotating polytropes with index unity 759

stage these disadvantages are eliminated. As a result, we find the improved con-
stants α2l as well as the polar and equatorial radii. Now the eccentricity e(Ω)
is already determined only by the relations between ξp(Ω) and ξe(Ω), and the
polytrope surface is slightly different from the surface of the auxiliary ellipsoid
with the parameters ξp(Ω) and ξe(Ω). Obtained in this way integration constants
and polytrope characteristics are shown in Tab. 1 at l0 = 2 in approximation
(36). The maximal value of the angular velocity is determined from condition

Table 1. Dependence of the model characteristics with the polytropic index n = 1 on

the angular velocity according to expression (36). Notation: Ω is the angular velocity,

e(Ω) is the eccentricity, ξp(Ω), ξe(Ω) are the polar and equatorial radii, α2(Ω), α4(Ω)

are integration constants, and η(n,Ω), ζ(n,Ω) are determined by Eqs. (47).

Ω e(Ω) ξp(Ω) ξe(Ω) α2(Ω) α4(Ω) η(n,Ω) ζ(n,Ω)
0.01000 0.03181 3.14081 3.14240 −8.22777 0.00823046 1.00023 1.00069
0.02000 0.06357 3.13845 3.14481 −8.23709 0.0329826 1.00092 1.00276
0.03000 0.09529 3.13453 3.14886 −8.25271 0.0744407 1.00207 1.00624
0.04000 0.12692 3.12906 3.15457 −8.27476 0.132918 1.0037 1.01115
0.05000 0.15846 3.12203 3.16198 −8.30344 0.208868 1.00582 1.01755
0.06000 0.18989 3.11347 3.17117 −8.33901 0.302896 1.00845 1.02550
0.07000 0.22120 3.10338 3.18221 −8.38178 0.415783 1.0116 1.03509
0.08000 0.25234 3.09179 3.19519 −8.43219 0.548513 1.01532 1.04643
0.09000 0.28334 3.07869 3.21025 −8.49072 0.702305 1.01962 1.05963
0.10000 0.31417 3.06410 3.22752 −8.55802 0.87867 1.02456 1.07487
0.11000 0.34483 3.04803 3.24720 −8.63483 1.07946 1.03019 1.09234
0.12000 0.37532 3.03048 3.26950 −8.72212 1.30699 1.03655 1.11227
0.13000 0.40567 3.01144 3.29472 −8.82104 1.56409 1.04374 1.13496
0.14000 0.43586 2.99091 3.32318 −8.93307 1.85437 1.05183 1.16077
0.15000 0.46596 2.96885 3.35536 −9.06006 2.18236 1.06093 1.19018
0.16000 0.49598 2.94521 3.39180 −9.20441 2.55395 1.07119 1.22375
0.17000 0.52601 2.91993 3.43328 −9.36930 2.97691 1.08276 1.26226
0.18000 0.55613 2.89289 3.48081 −9.55908 3.46178 1.09589 1.30672
0.19000 0.58648 2.86392 3.53586 −9.77991 4.02346 1.11086 1.35853
0.20000 0.61728 2.83276 3.60061 −10.04100 4.68409 1.1281 1.41973
0.21000 0.64889 2.79896 3.67856 −10.35720 5.47905 1.14825 1.49344
0.22000 0.68197 2.76174 3.77604 −10.75550 6.47174 1.17234 1.58498
0.23000 0.71801 2.71936 3.90695 −11.29530 7.80005 1.20241 1.70508
0.24000 0.76241 2.66599 4.11998 −12.18550 9.9398 1.24456 1.88674
0.24100 0.76815 2.65918 4.15324 −12.32580 10.2704 1.25026 1.91283
0.24200 0.77450 2.65173 4.19196 −12.48960 10.654 1.25657 1.94223
0.24300 0.78185 2.64324 4.23955 −12.69170 11.1232 1.26383 1.97680
0.24400 0.79133 2.63259 4.30595 −12.97500 11.7734 1.27299 2.02181
0.24410 0.79253 2.63127 4.31477 −13.01280 11.8594 1.27411 2.02749
0.24420 0.79382 2.62987 4.32435 −13.05380 11.9526 1.27532 2.03356
0.24430 0.79522 2.62836 4.33488 −13.09900 12.055 1.27661 2.04014
0.24440 0.79676 2.62671 4.34673 −13.14990 12.17 1.27803 2.04741
0.24450 0.79853 2.62484 4.36049 −13.20900 12.3033 1.27962 2.05566
0.24460 0.80067 2.62259 4.37754 −13.28240 12.4681 1.28153 2.06562
0.24470 0.80375 2.61944 4.40267 −13.39080 12.7103 1.28418 2.07971

(10). This is an instability point at which the leakage of matter occurs from the
vicinity of the equator.
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In our work Vavrukh et al. (2019), integration constants a2l for the approxi-
mation Ỹ (ξ, θ) at l̃0 = 3 were found in a similar way. The values of the polytrope
characteristics in this approximation and coefficients a2l are given in Tab. 2.

5. Dependence of the polytrope characteristics with index
n = 1 on the angular velocity

In Tab. 1 there are also shown the values

η(Ω) = M(Ω)/M(0), ζ(Ω) = I(Ω)/I(0), (47)

where M(Ω), I(Ω) denote the mass and the moment of inertia of the rotating
polytrope with index n = 1 in the considered approximation, and M(0) and I(0)
are, respectively, the mass and the moment of inertia of the polytrope without
rotation,

M(0) = 4π2λ3ρc, I(0) =
8

3
π2(π2 − 6)λ5ρc. (48)

In Tab. 2 there are shown the coefficients a2l and the polytrope character-
istics in approximation (37) at l̃0 = 3. Dependence of the equatorial radius on
the angular velocity in different approximations is illustrated in Fig. 1. Simi-
larly, dependence of the polar radius on the angular velocity in the same ap-
proximations is given in Fig. 2. As it can be seen from these Figures, the Milne
– Chandrasekhar approximation is applicable in the vicinity 0 ≤ Ω . 0.5 Ωmax,
where Ωmax=0.2447. . . . The constants α2 and α4 have the opposite signs and
significantly depend on the angular velocity. In the region 0 ≤ Ω ≤ 0.5 Ωmax

the constant α4 is small, and in the region Ω > 0.5Ωmax it is close to |α2|. Since
in the region 0 ≤ ξ ≤ ξe (Ωmax) the functions j2(ξ) and j4(ξ) are positive, the
approximation α4 = 0 is only applicable in the region of small velocities Ω.

Approximation (37) at l̃0 = 1 corresponds to the works of Chandrasekhar
(1933) and Caimmi (1980). Herewith, in the work of Chandrasekhar (1933)
the constant α2 is determined by expression (45) at ξ1 = π, and in the work
of Caimmi (1980) it is calculated numerically based on the calculation of the
change of the gravitational potential caused by the rotation. The critical values
of the angular velocity given by the authors are: Ωmax ≈ 0.3315 (Chandrasekhar,
1933) and Ωmax ≈ 0.3264 . . . (Caimmi, 1980). In fact, the results obtained by
the latter author improve the results of Chandrasekhar (1933). The approxima-
tion of Milne and Chandrasekhar (Milne, 1923; Chandrasekhar, 1933) is also
used by Monaghan & Roxburgh (1965) for the description of the inner poly-
trope region, the radius of which is close to the Emden radius. It is found the
maximal value of the velocity Ωmax ≈ 0.2755. In the work of James (1964)
the polytrope characteristics are calculated numerically. The index n = 1 cor-
responds to Ωmax

∼= 0.2891 . . . . From these comparisons it follows: the more
precise calculation, the smaller value of the critical velocity Ωmax.
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Table 2. Dependence of the model characteristics with the polytropic index n = 1 on

the angular velocity according to expression (37). Notation is the same as in Tab. 1.

Ω e(Ω) ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) a6(Ω) η(n,Ω) ζ(n,Ω)
0.01000 0.02739 3.14112 3.14230 −8.22784 0.00610775 −8.02713 · 10−6 1.00023 1.00062
0.02000 0.05478 3.13971 3.14443 −8.23739 0.02449 −0.000128907 1.00092 1.00249
0.03000 0.08219 3.13734 3.14799 −8.25338 0.055325 −0.000656943 1.00207 1.00563
0.04000 0.10961 3.13402 3.15302 −8.27594 0.0989151 −0.00209575 1.00369 1.01006
0.05000 0.13706 3.12973 3.15955 −8.30523 0.155695 −0.0051788 1.00580 1.01583
0.06000 0.16455 3.12447 3.16765 −8.34151 0.226242 −0.0108998 1.00839 1.02298
0.07000 0.19208 3.11820 3.17737 −8.38505 0.311294 −0.020555 1.01150 1.03158
0.08000 0.21967 3.11092 3.18880 −8.43625 0.411773 −0.0358001 1.01513 1.04172
0.09000 0.24733 3.10259 3.20205 −8.49557 0.52881 −0.0587258 1.01933 1.05351
0.10000 0.27507 3.09318 3.21725 −8.56357 0.663789 −0.0919578 1.02410 1.06707
0.11000 0.30291 3.08266 3.23456 −8.64098 0.818398 −0.13879 1.02951 1.08256
0.12000 0.33087 3.07097 3.25416 −8.72865 0.9947 −0.203359 1.03557 1.10016
0.13000 0.35900 3.05807 3.27632 −8.82768 1.19523 −0.290887 1.04237 1.12011
0.14000 0.38731 3.04388 3.30131 −8.93941 1.42314 −0.408009 1.04994 1.14270
0.15000 0.41586 3.02832 3.32953 −9.06557 1.68239 −0.563239 1.05839 1.16830
0.16000 0.44471 3.01127 3.36147 −9.20840 1.97802 −0.767633 1.06782 1.19736
0.17000 0.47394 2.99259 3.39779 −9.37084 2.31667 −1.03579 1.07834 1.23047
0.18000 0.50367 2.97208 3.43938 −9.55694 2.70721 −1.3874 1.09014 1.26843
0.19000 0.53407 2.94946 3.48752 −9.77240 3.16206 −1.84985 1.10343 1.31232
0.20000 0.56538 2.92430 3.54414 −10.02570 3.69946 −2.46274 1.11855 1.36371
0.21000 0.59802 2.89594 3.61237 −10.33050 4.3481 −3.28708 1.13597 1.42496
0.22000 0.63273 2.86321 3.69793 −10.71110 5.15825 −4.42644 1.15648 1.50007
0.23000 0.67114 2.82368 3.81334 −11.21930 6.23501 −6.09077 1.18158 1.59696
0.24000 0.71852 2.77019 4.00008 −12.01930 7.90279 −8.92229 1.21544 1.73805
0.24100 0.72446 2.76320 4.02826 −12.13670 8.14357 −9.35381 1.21980 1.75727
0.24200 0.73086 2.75562 4.06018 −12.26860 8.41224 −9.84267 1.22449 1.77830
0.24300 0.73793 2.74724 4.09737 −12.42040 8.71955 −10.4124 1.22964 1.80179
0.24400 0.74604 2.73767 4.14281 −12.60320 9.0861 −11.1087 1.23546 1.82894
0.24500 0.75612 2.72593 4.20403 −12.84440 9.5632 −12.0491 1.24249 1.86270
0.24600 0.77450 2.70593 4.33124 −13.32470 10.4868 −14.0363 1.25413 1.92196
0.24601 0.77507 2.70536 4.33555 −13.34070 10.5167 −14.1062 1.25445 1.92369
0.24602 0.77563 2.70481 4.33977 −13.35610 10.5455 −14.1737 1.25477 1.92537
0.24603 0.77626 2.70418 4.34461 −13.37360 10.5784 −14.2512 1.25512 1.92728
0.24604 0.77702 2.70344 4.35043 −13.39470 10.6177 −14.3446 1.25554 1.92955
0.24605 0.77800 2.70249 4.35808 −13.42230 10.669 −14.4675 1.25608 1.93248
0.24606 0.77959 2.70100 4.37053 −13.46670 10.7512 −14.6673 1.25693 1.93714
0.24607 0.78685 2.69478 4.42985 −13.66320 11.1084 −15.5733 1.26065 1.95773

Given the known coefficients α2l, we can build the polytrope surface using
Eq. (41). The meridional polytrope section in approximation (32) is shown in
Fig. 3 for two fixed values of the angular velocity Ω1 = 0.2 and Ω2 = 0.2447. As
it is shown in the Figure, at the angular velocity far from the maximal angular
velocity Ωmax the curve 1 coincides with crosses which are built according to
(23) and (36). However, at the angular velocity Ωmax, the real polytrope surface
(curve 3) is significantly different from the surface of the auxiliary ellipsoid (23).

The distribution of matter inside the polytrope determines the gravitational
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Figure 1. Dependence of the equatorial radius ξe(Ω) on the rotation velocity Ω for

the polytrope with n = 1 in different approximations. Curve 1 is built on the results

of Chandrasekhar (1933), curve 2 corresponds to our approximation (36) at l0 = 2.

Curve is 3 built on the results of James (1964), curve 4 – on the work of Caimmi

(1980).

potential outside it

Φgrav(r) = −G
∫

dr′ρc
|r− r′|

Y (ξ′) = −GM
r

{
1−

∞∑
l=1

P2l(cos θ)

(
λ

r

)2l

J2l(Ω)

}
,

(49)
where

J2l(Ω) = −


1∫
−1

dt′
ξ0(t

′)∫
0

dξ′(ξ′)2Y (ξ′, t′)


−1

1∫
−1

dt′P2l(t
′)

ξ0(t
′)∫

0

dξ′(ξ′)2l+2Y (ξ′, t′),

(50)

are the universal dimensionless characteristics, which only depend on the angu-
lar velocity Ω. Dependence of coefficients J2l(Ω) on the angular velocity Ω at
different values l according to Tab. 1 is shown in Fig. 4. At the small angular
velocities (Ω ≤ 0.5 Ωmax) all coefficients J2l(Ω) are small values which are pro-
portional to Ω2. In this region coefficient J2(Ω) is determinative. At the average
and rapid angular velocities (0.5 Ωmax ≤ Ω ≤ Ωmax) coefficients J2l(Ω) strongly
depend on the angular velocity Ω. |J2l(Ω)| is greater for greater l.
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Figure 2. Dependence of the polar radius ξp(Ω) on the rotation velocity Ω for the

polytrope with n = 1 in different approximations. The notation is the same as in

Fig. 1.

6. The solution of the equilibrium equation at n = 1 + δ

The model of polytrope with n = 1 is very attractive because in this case we can
write the exact solution or its sufficient approximation. However, the polytropic
model of a star at n = 1 is still limited, in a general case the polytrope with axial
rotation has four independent parameters (K, ρc, ω andn), and the equation of
state is written in form (1). Because the polytropic model with n = 1 is a good
approximation for massive stars with rapid rotation, it is worth extending it by
considering the model with four parameters at n = 1 + δ, where δ is a small
value.

In the dimensionless form the equilibrium equation is written in the form

∆ξ,θY (ξ, θ) = Ω2 − Y 1+δ(ξ, θ), (51)

and the transition to the dimensionless variables is performed using expressions

r = ξλ̃, ρ(r, θ) = ρcY
1+δ(ξ, θ), (2 + δ)K = 4πGλ̃2ργc ,

γ = δ(1 + δ)−1, Ω = ω(2πGρc)
−1/2.

(52)

Analogous to Eq. (22) is now the equation

Y (ξ, θ) = 1 +
Ω2ξ2

6

(
1− P2(t)

)
+

1

4π

∫
Y 1+δ(ξ

′
, θ

′
)Q(ξ, ξ

′
) dξ

′
. (53)
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Figure 3. The meridional section of the polytrope surface. Curve 1 corresponds to

formulae (23) which determine the rotational polytrope surface at the angular velocity

Ω1 = 0.2. Curve 2 – the same but for Ω2 = 0.2447. Curve 3 is built according to formula

(36) at Ω2 = 0.2447. Crosses are built according to formula (36) at Ω1 = 0.2.

It is obvious from the general physical considerations that Ỹ (ξ, θ) is a monoto-
nous function of the polytropic index. Therefore, at |δ| � 1 we can use the
iteration method in Eq. (53) and in the zero approximation Y (ξ′, θ′) is replaced
by Y1(ξ′, θ′), which corresponds to δ = 0. The first iteration yields

Y (ξ, θ) = Y1(ξ′, θ′) +
1

4π

∫
Q(ξ, ξ

′
) Y1(ξ

′
, θ

′
)[Y δ1 (ξ

′
, θ

′
)− 1] dξ

′
. (54)

In particular, in the linear approximation over the parameter δ

Y (ξ, θ) = Y1(ξ′, θ′) +
δ

4π

∫
Q(ξ, ξ

′
) Y1(ξ

′
, θ

′
) lnY1(ξ

′
, θ

′
) dξ

′
. (55)

Expanding the kernel Q(ξ, ξ
′
) in series of the Legendre polynomials, we obtain

the final representation

Y (ξ, θ) = Y1(ξ, θ) +
δ

2

{
f0(ξ) +

∞∑
l=1

P2l(t)f2l(ξ)

}
. (56)
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Figure 4. Dependence of coefficients (moments of inertia) J2l(Ω) on the angular ve-

locity Ω for several values of the parameter l (1 ≤ l ≤ 5, ∆l = 1) (see Eqs. (49), (50)).

Curve 1 corresponds to J2l(Ω) at l = 1, curve 5 – l = 5.

The functions f0(ξ) and f2l(ξ) are determined by the following expressions:

f0(ξ) = −
ξ∫

0

dξ′ξ′
1∫
−1

dt′Ψ(ξ′, t′) +
1

ξ

ξ∫
0

dξ′(ξ′)2
1∫
−1

dt′Ψ(ξ′, t′),

f2l(ξ) = (ξ)−1−2l
ξ∫

0

dξ′(ξ′)2l+2

1∫
−1

dt′P2l(t
′)Ψ(ξ′, t′)+

+ ξ2l
1∫
−1

dt′P2l(t
′)

ξ0(t
′)∫

ξ

dξ′(ξ′)1−2lΨ(ξ′, t′); Ψ(ξ′, t′) = Y1(ξ′, t′) ln [Y1(ξ′, t′)].

(57)

A general solution, Y (ξ, θ), according to expression (56) at a fixed value of the
angular velocity Ω = 0.2 is shown in Fig. 5. In this case Y1(ξ, θ) is determined by
expression (36). As it is shown in Figure 5 at the positive values δ we have the
increase of both the equatorial and polar radii. This corresponds to the general
behavior of the polytrope radius without rotation when varying the index n.
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expression (56) at fixed values Ω and t. Curves 1 correspond to the equilibrium equation
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7. The inverse problem for the polytrope with index n = 1

The polytrope with n = 1 can be used for the construction of simple poly-
tropic models of stars of early spectral classes, for which significant velocities
of angular rotation are typical (Kong et al., 2015). Such a model has three
independent parameters K, ρc, ω, which have to be determined for the indi-
vidual observable star. If only the mass M and the equatorial radius Re are
reliably known from observations, then we can only find a narrow variation
range for model parameters. For example, we consider the model for the star α
Eri (M = 9.7466 · 1030 kg = 4.9M�, Re = 8.3520 · 109 m = 12R�), the parame-
ters of which are considered in the works of Kong et al. (2015) and Knopik et al.
(2017). Taking into account the results of these works, we consider the model in
a small variation range of the dimensionless angular velocity Ω0 ≤ Ω ≤ Ωmax.
Using the results of our calculations from Tables 1 and 2, for each Ω we find the
corresponding values e(Ω) and ξe(Ω). From the relation

M

R3
e

= 4π2η(Ω)ρcξ
−3
e (Ω) (58)

we find the density in the stellar centre ρc(Ω). From the relation

Re = ξe(Ω)

(
K

2πG

)1/2

(59)

we determine the parameter K, and from definition (9) we obtain ω(Ω). In the
work of Kong et al. (2015) the angular velocity was not determined, but there
was used its value at the stellar equator obtained from observations with the
help of the Doppler effect. Such a value of the angular velocity is bigger than
the angular velocity in the polytrope model due to the presence of differential
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rotation. For the model with eccentricity e = 0.7454, which is used by Kong et al.
(2015), at Ω = 0.23655 and the dimensionless equatorial radius ξe(Ω) = 4.02993
in approximation (36), we obtain

K1 = 1.801·109 Pa m6 (kg)
−2
, ρ(1)c = 22.588 kg m−3, ω1 = 2.302·10−5 s−1. (60)

At Ω = 0.24396 the dimensionless equatorial radius ξe(Ω) = 4.12304 in approx-
imation (37), therefore

K2 = 1.721·109 Pa m6 (kg)
−2
, ρ(2)c = 24.045 kg m−3, ω2 = 2.450·10−5 s−1. (61)

Comparing with the result of Kong et al. (2015) (K0 = 1.75 · 109 Pa m6

(kg)
−2

), we can see that the parameter K > K0 from approximation (36), and
K < K0 from approximation (37). The approximate solution of the equilibrium
equation in the form

3

8
Y (ξ, θ) +

5

8
Ỹ (ξ, θ) (62)

(which is close to the “gold section”), where Y (ξ, θ) and Ỹ (ξ, θ) are determined
by expressions (36) and (37) at Ω = 0.241496 and ξe(Ω) = 4.08559, which is
calculated numerically, allows us to determine the polytropic parameters

K = 1.752 · 109 Pa m6 (kg)
−2
, ρc = 23.437 kg m−3, ω = 2.394 · 10−5 s−1, (63)

which almost coincide with those of Kong et al. (2015). To simplify the usage
of formula (62), we represented dependencies of the coefficients α2l and a2l
as the functions of the angular velocity in the form of Padé approximants.
Thereby we obtained the analytical dependence of the equilibrium equation
solutions on both the coordinates and Ω. The deviation of the obtained angular
velocity calculated by Kong et al. (2015) from the observed value for α Eri
(2.97·10−5 s−1) we can explain with the differential rotation of the stellar surface
layers. Based on the found parameters K, ρc and Ω we calculated coefficients
J2l(Ω) for the model of α Eri, which are given in Tab. 3. For the comparison

Table 3. Coefficients J2l(Ω) for the model of α Eri for different values of l.

l 1 2 3 4 5
J2l(Ω) 0.934751 −2.65689 11.8846 −68.2954 459.572

with results of Kong et al. (2015), we should replace the length scale λ with the
scale Re = 8.3520 · 109 m, writing the potential Φgrav(r) in the form

Φgrav(r) = −GM
Re

1

r̃

{
1−

∞∑
l=1

P2l(cos θ)

r̃2l
I2l(Ω)

}
, (64)
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Table 4. The parameters K and ρc of the polytropic model according to the averaged

rotational velocities of main-sequence stars.(The observable values M, R, ω are taken

from the work of McNally (1965)).

Sp M, 1030kg R, 109m ω, 10−5s−1 K, 109Pa ·m6(kg)−2 ρc, kg/m
3

ξe(Ω) Ω η(Ω)
O5 79 12 1.5 5.69709 38.6225 3.25561 0.118 1.03462
B0 34 5.3 3.8 1.08767 197.267 3.29082 0.133 1.04508
B5 14 2.8 7.6 0.29196 573.682 3.35562 0.155 1.06400
A0 7.1 1.8 10.0 0.12207 1081.91 3.33617 0.149 1.05836
A5 4.4 1.2 13.0 0.055583 2206.65 3.29602 0.135 1.04661
F0 3.5 0.94 10.0 0.036262 3428.6 3.19653 0.084 1.01682
F5 2.8 0.84 3.0 0.029897 3720.64 3.14589 0.024 1.00132
G0 2.1 0.73 1.6 0.022626 4242.68 3.14266 0.012 1.00033

where I2l(Ω) = J2l(Ω) · (λ/Re)2l, r̃ = r/Re. Found in this way I2l(Ω) are close
to those of Kong et al. (2015). In particular, at l = 1 we obtain I2(Ω) = 0.05603,
which differs from that of Kong et al. (2015) by less than 2.4%.

It makes also sense to define approximately the polytropic model parameters
for a certain class of stars with rapid rotation. We used the averaged (statistical)
values of masses and radii of stars of early spectral classes (O5÷G0) from the
work of McNally (1965). Taking the radii, which are given in Tab. 4 as equa-
torial, we calculated the values of the parameters K and ρc in approximation
(62) for the grid parameters of the values ε = Rp/Re. From this grid we selected
results that correspond to those ε at which the calculated values ω coincide with
submitted ones in the work of McNally (1965). Dependence of the parameters
of the “class” model K and ρc on the mass of stars obtained here turned out to
be expected: large values of K (small ρc) correspond to massive stars in which
the density of matter is small; and small values of K (large ρc) correspond to
low-mass stars in which the central density of matter is large. Although the
obtained results are approximate, they illustrate dependence of the polytrope
parameters on the spectral class or average stellar mass.

8. Conclusions

The polytrope model with n = 1 takes the central place in the polytropic theory
with axial rotation. Due to its simplicity it allows us to obtain the solutions of
the equilibrium equation with high precision and yields a reliable values of the
model characteristics. Therefore, finding the solution of the equilibrium equation
of this model in different approximations and their application is one of actual
problems of astrophysics. We obtained a simple analytical shape of the solution
of the differential equilibrium Eqs. (2), (8) for the polytrope with n = 1 and
solid-body rotation in the form of infinite series (32) or (34). Both variants allow
approximations in the form of series with a small number of terms (36) and (37),
or their linear combinations (38). The practical calculation of the coefficients
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α2l were performed based on the integral form of Eq. (22), that is reduced to
the system of linear equations (42). The system of Eqs. (41), (42) we solved by
a two-stage numerical iteration method. The iteration procedure allows us to
calculate simultaneously dependence of the coefficients α2l, polar and equatorial
radii on the dimensionless angular velocity Ω. The approximation of the exact
solution, which is obtained explicitly, allows us to calculate dependence of the
mass and the moment of inertia on the angular velocity. In an analogous way
we find the constants a2l, geometrical and physical characteristics of the model
as the functions of Ω in approximation (37). As it can be seen in Figures and
Tables 1 and 2, the critical value of the angular velocity Ωmax is smaller than
in the work of other authors. Approximation (36) is used for the calculation
of the gravitational potential outside the polytrope. Expansions (36) and (37)
have good convergence and the increase in the number of series terms leads
to insignificant changes of the characteristics only in the vicinity of Ωmax. The
convergence of series (36) and (37) is provided by the Bessel functions, which
have standard asymptotics at ξ → 0 (Abramowitz & Stegun, 1970). However,
it strongly depends on the angular velocity. For example, for the case of the
equator from approximation (37) the ratio of individual terms of the series can
be represented as

f2 : f4 : f6 = 1.31 : 0.02 : 0.002 at Ω = 0.1,

f2 : f4 : f6 = 1.53 : 0.12 : 0.007 at Ω = 0.2,

f2 : f4 : f6 = 1.44 : 0.64 : 0.13 at Ω = Ωmax,

where f2l = a2l(Ω)P2l(0)j2l(ξe), (1 ≤ l ≤ 3). It can be seen that in an almost
entire domain of the angular velocity the convergence is very good, but it worsens
in the vicinity of Ωmax(1). Obviously, finding the solutions of the equilibrium
equation in the vicinity of Ωmax deserves special attention.

With all its advantages the model with n = 1 is only one of the polytropic
models, which can be used for the description of celestial objects. Therefore, it
is appropriate to have precise enough solutions of the mechanical equilibrium
equation for the model with n 6= 1. The solution of the equilibrium equation for
the case n = 1 + δ (where δ is a small value) was obtained by the method of
the perturbation theory. Dependence of the surface shape of such a polytrope
on the parameter δ corresponds to the famous dependence of the polytrope
characteristics on the index n (Chandrasekhar, 1933). This model can be useful
for the description of stars with the very rapid angular velocity (Ω ≥ 0.25).

The geometrical and physical characteristics of the polytropic models deter-
mine not only the solution of the mechanical equilibrium in the dimensionless
form, but also the values of the parameters K, ρc, ω for the individual celes-
tial bodies. Therefore, the inverse problem of the theory arises – finding these
parameters according to the known solution of the equilibrium equation and
observable characteristics of celestial bodies. As an illustration of our approach
we considered the problem of the parameters of the polytropic model for the
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star α Eri and compared them with the results of the work of Kong et al. (2015).

In approximation (62) the value K = 1.752 · 109 Pa m6 (kg)
−2

obtained by us
almost coincides with that of Kong et al. (2015). Coefficients J2l(Ω) are cal-
culated in approximation (62), which are also close to the coefficients of Kong
et al. (2015). Moreover, for the first time, we considered the problem of the ap-
proximate calculation of the parameters K and ρc for the full subclasses of stars,
namely O5÷G0, using the observable data from the work of McNally (1965).

The considered examples indicate that the simple analytical approximations
of the solution of the equilibrium equation obtained by us are useful for the
description of celestial bodies, in particular to build stellar models with rapid
axial rotation.
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