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Abstract. The regression analysis of spectra of laser initiated electric discharge
spark in atmosphere is presented here. Spectral images of optical emission of
atmospheric plasma are obtained by a streak camera and integrated in time
to obtain sample spectra of plasma with different apparent temperatures. We
already have analyzed such spectra using principal component analysis and
classification techniques. Now, we have advanced research through the ANN
and deep learning technique. Namely, large set of measured spectra are used to
train the artificial neural network to obtain the estimation of apparent plasma
temperature. For machine learning approach to data analysis we use Solo+Mia
software package (Version 9.0, Eigenvector Research Inc, USA).

Key words: Machine learning — Deep learning — Laser induced breakdown
spectroscopy

1. Introduction

Various machine learning (ML) techniques are used more and more for analysis
of LIBS data. The combination of the popular machine learning algorithms
(PCA and LDA, unsupervised and supervised techniques, respectively) with
LIBS are used to complete rapid and precise classification of different samples
Bellou et al. (2020); Diaz et al. (2020); Pofizka et al. (2018); Yang et al. (2020);
Zhang et al. (2022). An artificial neural network (ANN) algorithm is also used
for the determination of electron temperature and electron number density in
LIBS Borges et al. (2014); D’Andrea et al. (2015) The advantage of ANNSs is
in the possibility of reproducing nonlinear relations between the inputs and the
output(s).

In our recent work we have combined several machine learning techniques,
such as K-nearest neighbors classification together with clustering algorithms
in supervised manner which is possible in SOLO software, in order to estimate
apparent plasma temperature Rabasovic et al. (2022). In that study we have
analyzed the possibilities of using ML for analysis of optical spectra emitted by
laser induced breakdown and electric discharge spark in atmosphere.
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Now, we have advanced research through the ANN and deep learning tech-
nique. Namely, set of measured spectra, of copper plasma in air, similarly ob-
tained as in Rabasovic et al. (2022), are used to train the artificial neural net-
work to achieve the estimation of apparent plasma temperature. For machine
learning approach to data analysis we use Solo+Mia software package (Version
9.0, Eigenvector Research Inc, USA) Wise et al. (2006).

2. Methods

Our experimental set-up for obtaining the training spectra for deep learning
ANN (ANNDL) is explained in detail in Rabasovic et al. (2022). Shortly, spec-
tral images of optical emission of atmospheric plasma are obtained by a streak
camera and integrated in time to obtain sample spectra of plasma with different
temperatures. It should be pointed out that, because streak images are resolved
in time, we were capable to select time windows for integrating spectra in such
a way that intensive optical emission of initial plasma was not included.The
apparent electron temperature was calculated using the well known Boltzman
plot technique, assuming a local thermal equilibrium (LTE) and also that the
plasma is optically thin (absorption and scattering can be neglected) Asamoah
& Hongbing (2017); Shaikh et al. (2006). The measured copper atomic lines at
wavelength of 510, 515 and 522 nm were used to calculate the electron temper-
ature.

For training the ANNDL we have used the set of 55 copper spectra for input
vectors. As output vector we have used the set of calculated apparent electron
temperatures of plasma, corresponding to those 55 input vectors.

3. Results and discussion

Measured (calculated by Boltzman plot) temperatures of training set are shown
in Fig. 1. Plot of predicted temperatures looks much the same, so we omit to
present it here.

The general idea of estimating the electron temperature using ANNDL is to
train the network using sample spectra for which the temperature is calculated
using Boltzman plot. Through training phase the network iteratively minimizes
errors between the calculated and predicted temperatures.

Residuals (differences) between the calculated (used for training) and pre-
dicted temperatures obtained by deep learning neural network model are shown
in Fig. 2. Errors for the samples inside the training set are relatively small,
about 1.25 % is the largest one.

After feeding the network with samples with known, calculated tempera-
tures, and if we were satisfied that residuals are acceptably small, the network
could be fed by spectra not seen before.
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Figure 1. Measured (calculated by Boltzman plot) temperatures of training set.
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Figure 2. Residuals (differences) between the calculated (used for training) and pre-
dicted temperatures obtained by deep learning neural network model.
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Table 1. Calculated (using Boltzman plot) and by deep learning neural network pre-
dicted temperatures of test samples and their differences.

Temperature [K]
Test sample  Calculated Predicted Difference

1 11595 11748 -152
2 9400 9221 178
3 8609 9014 -405
4 7331 7283 49

5 6631 6610 21

Fig. 3 shows the predicted temperatures of 5 test samples. Table 1 shows
calculated (using Boltzman plot) and by deep learning neural network predicted
temperatures of test samples and their differences.
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Figure 3. Predicted temperatures of 5 test samples.

Systematic errors when using Boltzman plot come mainly from the uncer-
tainties in the transition probabilities and the measurement of the intensity of
spectral lines Shaikh et al. (2006), where uncertainties are estimated to be at
least 10 %, so estimation errors visible in Table 1 look fully acceptable. The
largest error is about 4.7 %.
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4. Conclusions and Discussion

We have used deep learning ANN to estimate the electron temperature of
plasma. We have proved that, instead of using the usual way of identifying
the spectral peaks and calculating their intensity ratio, it is possible to train
the computer by feeding the ANNDL by known spectra with calculated tem-
peratures to estimate the temperature of the spectra not seen before.
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