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Abstract. Stark broadening parameters, line widths and shifts, have been cal-
culated for spectral lines within Fe XXV 3s2SJ -3p2PoJ′ multiplet, by using the
impact semiclassical perturbation theory. The obtained results have been used
to demonstrate, that in spite of big differences of line width values expressed as
usual in Å, they are practically the same when expressed in angular frequency
units. This confirms that in the case of Fe XXV spectral lines we can use the
known Stark broadening parameters, expressed in angular frequency units, to
obtain the unknown ones, for other lines in the same multiplet. The obtained
data are particularly interesting for neutron star atmospheres and environment
investigation and modelling as well as for inertial fusion plasma.
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1. Introduction

Stark broadening parameters, spectral line widths and shifts originating from
fluctuating electric microfilds created by surrounding charged particles, are of
interest for different problems in astrophysics (see for example Beauchamp et al.,
1997; Popović et al., 2001; Dimitrijević & Sahal-Bréchot, 2014; Dimitrijević &
Christova, 2021; Dimitrijević et al., 2021), laboratory, (Konjević, 1999; Blago-
jević et al., 1999; Torres et al., 2006), fusion (Griem, 1992; Iglesias et al., 1997),
laser produced plasma research (Gornushkin et al., 1999; Nicolosi et al., 1978;
Sorge et al., 2000), different plasmas in technology (Yilbas et al., 2015; Hoffman
et al., 2006; Dimitrijević & Sahal-Bréchot, 2014; Dimitrijević et al., 2021), as
well as laser design and development (Wang et al., 1992; Csillag & Dimitrijević,
2004; Dimitrijević & Sahal-Bréchot, 2014).

Stark broadening data are of interest for a number of astrophysical problems,
as for example radiative transfer calculations, abundance determinations and in-
vestigation, stellar spectra analysis, modelling and synthesis, and other research
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fields (see for example Dimitrijević & Christova, 2021). In white dwarf atmo-
spheres, plasma conditions are favorable for Stark broadening, and there, it is
usually the principal pressure broadening mechanism. For example, the influence
of Stark broadening has been investigated in atmospheres of DO (Dimitrijević
et al., 2016, 2018; Dimitrijević & Chougule, 2018; Dimitrijević et al., 2021), DB
(Majlinger et al., 2017, 2018, 2020; Dimitrijević et al., 2021), DA (Majlinger
et al., 2017, 2020) dwarfs and in B subdwarfs (Hamdi et al., 2017; Chougule
et al., 2020). It should be noted that such data may be also of interest in the
case of A and late B type stars (Majlinger et al., 2017, 2020).

Another class of celestial objects where Stark broadening is of interest, are
neutron stars (see for example Madej, 1989; Paerels, 1997; Majczyna et al.,
2005; Suleimanov et al., 2014) and their environments (van Peet et al., 2009).
We note as well that exist attempts to create neutron star plasma conditions
in laboratory (Moon et al., 2005) and that for diagnostic of such plasma, Stark
broadening data for Fe XXV spectral lines may be also of interest. For modelling
and investigation of their atmospheres, highly ionized iron lines are important.
They are observed in neutron star spectra, as e.g. by Cottam et al. (2002),
who found a Fe XXV feature (n = 2-3 transition) in X-ray burst spectra of
EXO 0748676. We note as well that Werner et al. (2007) performed spectrum
synthesis of neutron star atmospheres with iron lines from Fe XVII up to Fe
XXVII.

Our objective here is to examine Stark broadening parameters for particular
lines within the multiplet Fe XXV 3s2SJ -3p2Po

J′ , of interest for neutron stars
and their environments, in order to investigate their similarities. We want to
check, if from values for one line, one could estimate Stark broadening parame-
ters for other lines in Fe XXV multiplets, in spite of eventual differences between
Stark broadening parameters.

2. Theory

For the calculations of Stark broadening parameters of helium-like Fe XXV spec-
tral lines, the impact semiclassical perturbation theory (Sahal-Bréchot, 1969a,b;
Sahal-Bréchot, Dimitrijević, & Ben Nessib, 2014) has been employed. This the-
oretical method has been described in detail in above mentioned references, and
only basic formulas will be given here. According to the semiclassical theory, the
emitter is treated as quantum system and perturbers are examined as classical
particles. The full width at half maximum (FWHM - W ) and shift (d) of an
isolated spectral line are given in the case of non-hydrogenic ions as:

W = N

∫
vf(v)dv

∑
i′ 6=i

σii′(v) +
∑
f ′ 6=f

σff ′(v) + σel


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d = N

∫
vf(v)dv

∫ RD

R3

2πρdρ sin(2ϕp). (1)

where i and f denote the initial and final level of the corresponding transition;
i′ and f ′ are perturbing levels; N perturber density; v perturber velocity, and
f(v) is the Maxwellian distribution of electron velocities. The inelastic cross
sections σkk′(υ), k = i, f are presented here by an integration of the transition
probability Pkk′(ρ, υ), over the impact parameter ρ as:

∑
k′ 6=k

σkk′(υ) =
1

2
πR2

1 +

∫ RD

R1

2πρdρ
∑
k′ 6=k

Pkk′(ρ, υ). (2)

The cross section for elastic collisions is given as:

σel = 2πR2
2 +

∫ RD

R2

2πρdρ sin2 δ + σr,

δ = (ϕ2
p + ϕ2

q)
1
2 . (3)

Here, δ denotes the phase shift with components ϕp (r−4) and ϕq (r−3), describ-
ing contributions due to polarization and quadrupole potentials, respectively.
The method of symmetrization and calculation of cut-off parameters R1, R2,
R3, and the Debye cut-off RD is explained in Sahal-Bréchot (1969b). The cal-
culation of the contribution of Feshbach resonances (σr), is explained in detail
in Fleurier et al. (1977) and Sahal-Bréchot (2021).

3. Results and discussion

For calculations of Stark broadening parameters, full width at half intensity
maximum (FWHM - W ) and shift (d) we used the semiclassical perturba-
tion theory (Sahal-Bréchot, 1969a,b; Sahal-Bréchot, Dimitrijević, & Ben Nessib,
2014). The electron density is 1017 cm−3 and temperatures 300 000 K, 500 000
K, 1 000 000 K, 5 000 000 K, 10 000 000 K, and 20 000 000 K. The needed
set of atomic energy levels for Fe XXV, have been taken from Sugar & Corliss
(1985), Shirai et al. (2000) and Kramida et al. (2021). Oscillator strengths have
been calculated employing Bates & Damgaard (1949) approach, the tables of
Oertel & Shomo (1968) and the method of van Regemorter et al. (1979) for
higher levels, in the cases when the approach of Bates & Damgaard (1949) is
not suitable.

The results, for Stark Full Width at Half intensity Maximum (FWHM) and
shift for three lines within the Fe XXV 3s2SJ -3p2Po

J′ multiplet broadened with
collisions with electrons are presented in Table 1.
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The wavelengths are calculated from atomic energy levels, so that they may
be different from observed. If the correction of this difference is needed, we can
do this for the width and similarly for the shift as:

W1 =

(
λ1

λ

)2

W. (4)

Here, W1 is the corrected width, λ1 is the experimental, λ the calculated wave-
length and W the width in Å from Table1 in this paper.

The quantity C (Dimitrijević & Sahal-Bréchot, 1984) gives the maximal
perturber density for which the line may be considered as isolated, when it is
divided by the corresponding width (W ).

In the obtained results we found that the largest Stark width value, expressed
as usual in Å, for particular spectral lines within the investigated multiplet, is
up to 2.6 times bigger from the smallest one. In the case of the shift, the biggest
value is up to 3.0 times larger from the smallest. On the other hand, Wiese and
Konjević (1982; 1992) examined regularities and similarities in experimental re-
sults for Stark widths and shifts and found that line widths in angular frequency
units in multiplets usually agree within a few per cent and shifts within ± 10%.
These findings were very useful to estimate unknown Stark broadening param-
eters of a line within a multiplet, if we have data for another line within the
same multiplet, as well as to critically estimate the published results or results
obtained during experiments or calculations. For this reason, in Table 1 are
parallelly given and results in angular frequency units.

We can transform Stark width in Å in angular frequency units by the
expression:

W (Å) =
λ2

2πc
W (s−1) (5)

where c is the speed of light.
One can see from Table 1, that for Stark widths, for all considered tem-

peratures, the largest width is 2.6 times larger than the smallest one. For shift
this ratio depends on temperature. For T = 300 000 K, 500 000 K, 1 000 000
K, 5 000 000 K, 10 000 000 K and 20 000 000 K, the greatest Stark shift is
2.8, 3.0, 3.0, 2.9, 2.8, and 2.8 times greater from the smallest one respectively.
However, if we look at differences of Stark broadening parameters expressed in
angular frequency units, the largest Stark width is only 0.065% larger than the
smallest one, so that they are practically identical. This is even better than the
prediction of Wiese and Konjević (1982; 1992). On the other hand in the case of
the Stark shift small differences exist and they are dependent on temperature.
So, in the case of the Stark shift, the largest Stark shft is 6.1%, 13.8%, 15.0%,
12.0%, 5.6% and 5.5% larger than the smallest one, for T = 300 000 K, 500 000
K, 1 000 000 K, 5 000 000 K, 10 000 000 K and 20 000 000 K, respectively. For
some temperatures the difference is a little bit larger than the prediction of 10%
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Table 1. This table gives electron-impact broadening parameters for Fe XXV lines,

Stark FWHM W and shift d, expressed in Å and in angular frequency units. Calculated

wavelength of the transitions (in Å) and parameter C are also given. This parameter,

when divided with the corresponding Stark width, gives an estimate for the maximal

pertuber density for which the line may be treated as isolated. Results are for electron

density of 1017 cm−3 and temperatures are from 300 000 K to 20 000 000 K. A positive

shift is towards the red part of the spectrum.

TRANSITION T[105 K] W[Å] d[Å] W[1012s−1] d[1012s−1]
3s3S1-3p3Po

0 3. 1.98 -0.0422. 15.5 -0.330
1552.8 Å 5. 1.55 -0.0179 12.1 -0.140

C = 1.6 1023 10. 0.592 -0.0157 8.75 -0.123
50. 0.548 -0.0143 4.28 -0.112

100. 0.410 -0.0126 3.20 -0.0984
200. 0.311 -0.0101 2.43 -0.0789

3s3S1-3p3Po
1 3. 1.72 -0.0363 15.4 -0.326

1449.3 Å 5. 1.35 -0.0154 12.1 -0.138
C = 1.4 1023 10. 0.976 -0.0133 8.75 -0.119

50. 0.478 -0.0123 4.29 -0.110
100. 0.358 -0.0109 3.21 -0.0977
200. 0.271 -0.00872 2.43 -0.0782

3s3S1-3p3Po
2 3. 0.754 -0.0151 15.5 -0.311

956.0 Å 5. 0.591 -0.00599 12.3 -0.123
C = 0.31 1023 10. 0.427 -0.00518 8.80 -0.107

50. 0.210 -0.00487 4.33 -0.100
100. 0.157 -0.00452 3.24 -0.0932
200. 0.119 -0.00363 2.45 -0.0748

of Wiese and Konjević (1982; 1992). One can see that in spite of differences of
Stark broadening parameters within the multiplet, expressed in Å we can use
these parameters in angular frequency units to obtain the unknown value within
the considered multiplet from the known one. For this purpose one can use Eq.
7, where W and λ are FWHM and wavelength of the known Stark width and
W1 and λ1 of the unknown one. For the shift the corresponding equation is anal-
ogous. This can be used to estimate the unknown Stark broadening parameters
within a multiplet of Fe XXV from the known ones.

4. Conclusion and future perspectives

The Stark broadening parameters, FWHM and shifts, have been calculated for
three lines within the Fe XXV 3s2SJ -3p2Po

J′ multiplet, by using the impact semi-
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classical perturbation theory. (Sahal-Bréchot, 1969a,b; Sahal-Bréchot, Dimitri-
jević, & Ben Nessib, 2014). The obtained results have been used to demonstrate
that, in spite of differences between Stark broadening parameters expressed in Å,
when expressed in angular frequency units, we can use the known Stark broad-
ening parameters to obtain the unknown ones, for other lines in the considered
multiplet. The obtained Stark broadening parameters will also be implemented
in STARK-B database (http://stark-b.obspm.fr/ - Sahal-Bréchot et al. (2015)),
which is included in Virtual Atomic and Molecular Data Center (VAMDC)
(http://www.vamdc.org/ - Dubernet et al. (2010, 2016); Albert et al. (2020)).

The obtained data are particularly interesting for neutron star atmospheres
and environment investigation and modelling as well as for inertial fusion plasma.
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Csillag, L. & Dimitrijević, M. S., On the Stark broadening of the 537.8 nm and 441.6
nm Cd+ lines excited in a hollow cathode laser discharge. 2004, Applied Physics B:
Lasers and Optics, 78, 221, DOI: 10.1007/s00340-003-1368-3
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Hamdi, R., Ben Nessib, N., Sahal Bréchot, S., & Dimitrijević, M. S., Stark Widths of
Ar II Spectral Lines in the Atmospheres of Subdwarf B Stars. 2017, Atoms, 5, 26,
DOI: 10.3390/atoms5030026
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