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Abstract. In September 2024, eclipsing binary star practitioners gathered in
Litomyšl, Czech Republic, the birth town of Zdeňek Kopal, one of the most
celebrated pioneers of our field, to discuss the latest developments and state-
of-the-art. I was invited to present my own biased view of the present and
the future of modeling eclipsing binary stars. In this contribution I attempt
to make a clear distinction between approaches that are suited to individual
objects and approaches that aim to deliver bulk results for large datasets.
I stress that our motivation should be different: individual system analysis is
warranted whenever there is potential to propose or improve our understanding
of the underlying physics, while bulk analysis should be used to probe stellar
formation and evolution channels. I briefly discuss two examples of tools to
achieve the goals: PHOEBE for individual system analysis, and PHOEBAI for
bulk analysis.
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1. Introduction

Eclipsing binary stars (EBs) have long been recognized as the calibrators of stel-
lar astrophysics. Most of what we know about the fundamental stellar properties
stems from EB studies (Torres et al., 2010). Their favorable orbital alignment
with the line of sight, and consequent eclipses, make them ideal astrophysical
laboratories: a simple geometry coupled with well-understood dynamical laws
allow us to obtain fundamental parameters without a-priori assumptions. Fig. 1
showcases the power of EBs: the masses, radii and luminosities of stars inferred
from EB observations constitute the most accurate set of constraints for the the-
ories of stellar formation and evolution. The uncertainties are generally below
2-3%, making the error-bars in Fig. 1 smaller than the symbols.

Binary systems do not discriminate on the spectral type or luminosity class;
be it main sequence stars, red giants, or compact objects, be it flaring M-dwarfs
or pulsating variables, be it tight mass-transferring systems or exoplanets, all
these components are found in binary stars. Once we find them in an eclipsing
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Figure 1. Radius-mass and luminosity-mass relationships for a sample of 94 EBs

(Torres et al., 2010). The dashed line is the theoretical zero-age main sequence. Un-

certainties in R, L and M are smaller than symbol sizes. Depicted with open symbols

are stars classified as giants.

system, the path to fundamental parameters is straight-forward. For obvious
reasons, colleagues who study these objects rely on masses and radii provided
from EB analyses, which earns EB practitioners an occasional bottle of wine for
their efforts. Further augmenting the importance of binaries is the observation
that around 20% of binaries have tertiary components (Orosz, 2015), including
circumbinary planets (Welsh et al., 2015); when all three components undergo
eclipses, the uncertainties in fundamental parameters can reach ∼0.1% (Carter
et al., 2011). It is thus of no surprise that Henry Norris Russell, in 1948, pointed
out EBs as “the Royal Road” to stellar astrophysics.

2. The present

The 21st has been marked by an unprecedented advancement in data quality.
NASA’s Kepler mission, for example, routinely achieved photometric precision
of the order of few tens of ppm (Borucki et al., 2010). Kepler observed ∼150,000
stars in the 105 square degree patch of the sky for 4 years with a 30-min ca-
dence (and ∼1,000 stars with 2-min cadence) with 92% temporal completeness.
In effect, for the first time we obtained a near-uninterrupted, ultra-precise set
of observations for a few thousand EBs as well (Kirk et al., 2016). Kepler’s
successor, TESS (Ricker et al., 2015), continued the census with thousands of
targeted EBs (Prša et al., 2022) and ∼150,000 EBs in full frame images across
the sky. While the majority of TESS EBs are observed continuously for about
a month at a time, the dataset still represents a glimpse into EB complexities
that remained hidden from ground-based observatories before. The latest space
survey, Gaia (Gaia Collaboration et al., 2021), provides a stereoscopic vision of
the Galaxy with simultaneous photometric, radial velocity, and astrometric ob-
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Table 1. A table of EB parameters that can be inferred from a specific combination

of observables. “Cal. LC” stands for flux-calibrated light curve, “SB1” stands for a

single-lined spectroscopic binary, and “SB2” for the double-lined spectroscopic binary.

The (X) symbol corresponds to quantities that can be inferred from some but not all

light curves. Adapted from Wrona & Prša (2024).

Parameter Cal. LC Cal. LC+
distance

2+ Cal.
LCs

2+ Cal.
LCs+dist.

2+ Cal.
LCs+SB1

2+ Cal.
LCs+SB2

t0 X X X X X X
P0 X X X X X X
i X X X X X X
e cosω X X X X X X
e sinω X X X X X X
r1 + r2 X X X X X X
T2/T1 X X X X X X
r2/r1 (X) (X) (X) (X) (X) X
q = M2/M1 (X) (X) (X) (X) (X) X
l3 (X) (X) (X) (X) (X) (X)

Ṗ , ω̇, . . . (X) (X) (X) (X) (X) (X)
L1 + L2 X X X
L1, L2 X X X
T1, T2 X X X X
vγ X X
M1, M2 X
R1, R2 X X
a X X

servations, with impressive first EB results for 400,000 systems (Mowlavi et al.,
2023).

This explosion in photometric precision and temporal coverage put EB mod-
els to the test. At this level of precision, the models could no longer reliably
reproduce observations, in part because of the missing physics, and in part be-
cause of the lack of the required numerical precision. PHOEBE (Prša & Zwitter,
2005) is one of the many codes that exhibited these inadequacies; this prompted
a code rewrite in 2016 to remediate the situation.

Irrespective of the choice for the utilized model, the new decade brought
on new requirements for modeling. EB practitioners have long realized that
– depending on the types of observables available – the parameter space is
non-linear and severely degenerate. Table 1 provides rule-of-thumb information
content for available types of observables: it informs us what parameters we can
infer from what types of observations. Thus, in general, to infer fundamental
parameters (masses, radii, temperatures and luminosities), we need multi-band
photometric and double-lined spectroscopic data.

Further, gone are the days where “solving” an EB means running an op-
timizer that minimizes the sum of squares of the residuals between the data
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and the model, providing (unrealistically small) formal errors and publishing
the results based on poorly sampled data with large scatter. Instead, the typical
solution process involves several steps (Conroy et al., 2020):

Solution estimation: in order to ascertain convergence for the optimizers, the
starting point in the parameter space needs to be reasonably close to a
solution1. This is a task for estimators: methods that quickly analyze the
data and provide a cursory solution. An example is an estimate of e cosω
from eclipse separation in phase, or r1/a+r2/a from eclipse widths, or e sinω
from the eclipse duration ratios.

Solution optimization: once close, the solution needs to converge to a min-
imum as robustly as possible. This is usually achieved by finding the pa-
rameters that minimize the sum of squares of the residuals. Optimization
is an iterative process that will typically follow the locally steepest slope
towards the minimum. Once there, it will estimate formal errors from the
covariance matrix. optimizers differential corrections (Wilson & Devinney,
1971), Nelder and Mead’s simplex method (Kallrath & Linnell, 1987), and
Powell’s direction set method (Prša & Zwitter, 2007).

Solution sampling: the minimum reached must not be construed as the final
solution: the topology of the parameter space near that minimum needs to
be properly explored. That is a task for samplers: methods that traverse
the vicinity of the parameter space and evaluate the probabilities in order
to infer realistic parameter values. This is a computationally expensive and
arduous process as parameter space needs to be traversed heuristically. Typi-
cal samplers include Markov Chain Monte Carlo methods (Foreman-Mackey
et al., 2019), differential evolution (Storn & Price, 1997), etc. Inference is
usually done within the Bayesian formalism, and the results are typically
presented in a corner plot, with individual parameter posterior probability
density functions and two-dimensional parameter cross-correlations (Conroy
et al., 2020).

These components need to be utilized in unison in order to derive a com-
pelling, credible solution for EB parameters given the data. The time cost of a
typical modeling process is weeks to months, depending on the complexity of
the parameter space, types of observations, and data quality and quantity.

3. The future

The 21st has also been marked by an unprecedented advancement in data
quantity. Table 2 provides a rough census of observed or expected numbers of
EBs in recent, currently ongoing, and imminent surveys.

1We deliberately stress a solution rather than the solution because, in most circumstances,
there will not be a single, unequivocal model that uniquely explains the data.
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Table 2. A census of recent, ongoing, and imminent surveys, along with their EB

yield.

Survey Data type Years of operation EB yield
K2 photometry 2014-18 ∼1,000
Kepler photometry 2009-13 ∼3,000
NGTS photometry 2015– ∼5,000
OGLE-II photometry 1997-2000 ∼6,000
Plato photometry 2026? ∼8,000
ASAS photometry 1997-2010 ∼10,000
Galah spectroscopy 2013– ∼15,000
OGLE-III photometry 2001-09 ∼40,000
ASAS-SN photometry 2014– ∼40,000
TESS photometry 2018– ∼150,000
OGLE-IV photometry 2010– ∼500,000
ZTF multi-band photometry 2018– ∼500,000
Gaia photometry, astrometry, RVs 2013– ∼1.8 million
CSST photometry, spectroscopy 2026? ∼2 million
LSST multi-band photometry 2025– ∼10 million

It seems clear that, over the next ten years or so, we will have well over
ten million EBs in our hands. In the previous section we have established that,
typically, we need ∼weeks of computer time to robustly analyze EB observables.
Thus, unless we are willing to accept that EB modeling remains a boutique2

operation, we need faster approaches.
One such approach utilizes artificial intelligence (AI). We have been inun-

dated with AI in our everyday lives, and for good reason. It powers technologies
like virtual assistants, personalized recommendations, and smart home devices,
making daily tasks more efficient and tailored to individual needs. In healthcare,
AI enables early diagnosis through advanced imaging and predictive analytics
(Secinaro et al., 2021), while in education, it supports personalized learning
experiences (Chen et al., 2020). AI also enhances industries like transporta-
tion with autonomous vehicles and navigation systems, and it revolutionizes
customer service through chatbots and automated support (Mohamad Suhaili
et al., 2021).

AI has been proposed for EBs as well, for automated classification (see, for
example, Čokina et al. 2021) and for bulk analysis (e.g., Prša et al. 2008). The
appeal is undeniable: if AI could “look at” observables, recognize them as EBs,
and deduce principal parameters in a fraction of a second, it would allow us to
rapidly analyze large datasets. The question, then, is how accurately can this
be done? Prša et al. (2008) trained a backpropagating neural network on syn-

2The task of solving 10 million EBs in the next 100 years would require ∼4000 astronomers
and ∼8 million computer cores, along with a moratorium on further observations.
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thetic light curves generated by PHOEBE (Prša & Zwitter, 2005; Prša et al.,
2016) where the network was shown ∼32,000 light curves with 5 corresponding
parameters: temperature ratio (T2/T1), sum of fractional radii (R1/a+R2/a), ra-
dial eccentricity (e sinω), tangential eccentricity (e cosω), and inclination (sin i).
They demonstrated that the trained network could attain the accuracy better
than 10% for 90% of the sample. This allowed the authors to deploy the network
on 2500+ EBs from OGLE and CALEB databases.

The principal problem with this type of approach is that, in the absence of
post-festum tests, we do not know which 10% are not correctly characterized.
Given that the neural network maps input (light curves) to output (parameters)
opaquely, not only do we lack the ability to evaluate per-light curve accuracy,
we also cannot attribute meaningful uncertainties to any obtained parameters.
The remedy is to run post-festum tests, but these can be both computationally
and temporally expensive, which defeats the initial purpose at least to some
extent.

There exists an alternative, though: we can exchange the neural network’s
inputs and outputs. Instead of providing light curves as input, we provide pa-
rameters; instead of collecting parameters as output, we collect light curves. The
network becomes an emulator of the physical engine. Assuming that the net-
work can be trained adequately to encompass the non-linear properties of our
complex, multivariate parameter space, each computation that takes minutes to
complete using the physical model can take milliseconds using a trained network.
Thus, the AI-powered engine becomes a drop-in replacement for the physical
model. In our particular case, PHOEBAI replaces PHOEBE (cf. Fig. 2).

Figure 2. A schematic representation of the feed-forward neural network that acts

as an emulator to the physical engine. Parameters pi are mapped through connection

weights wij across hidden layers hj to the output units ok, representing synthetic

observables.

Let us first estimate the potential speed-up and establish a good motive for
this effort. In Section 2 we estimate that, for the completion of the estimation,
optimization, and sampling stages, we require ∼ 106 forward model computa-
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tions. If each model takes ∼2 minutes to compute , we are talking about 3.8
years of compute time on a single processor core. To handle this volume of
computations in a reasonable time (say, 2 weeks), we need 100 cores – i.e., a
computer cluster. For the neural network, on the other hand, the model can
be “computed” within a millisecond. In that case, the net compute time be-
comes ∼1.5 hours on a single processor. Thus, AI holds promise of a ∼ 106-fold
speed-up.

There are certainly limitations to such an emulator, even if the underlying
network is perfectly trained.

– The inputs and the outputs are fixed, determined by the network topology.
If the network it trained with, say, 10 input parameters and it outputs,
say, 500 fluxes in equidistant phases, we are restricted to using the same 10
parameters and the emulator will yield fluxes in those exact 500 phase points.
The observations will thus need to be interpolated to the corresponding phase
array for comparison with the model, and any other parameters present in
the physical model will not play a role in the emulator.

– The network emulates phased light curves, so there can be no temporal
variation in the data. Any variability that is not captured by the parameters
used for training the network will inevitably skew the results to the extent of
the degeneracy between included and omitted parameters. Any trends in the
data, or more complex noise models, need to be accounted for either before
(i.e., by detrending) or concurrently with sampling (i.e., by modifying the
maximized probability function).

– Neural networks cannot be used on input that deviates from the training
set: while they are well suited for interpolation, they are notoriously bad at
extrapolation (Freeman & Skapura, 1991). Thus, if the training set does not
cover the parameter space adequately, sampling will not be done correctly.
It also means that, if the density of the covered parameter space is not
representative of actual distributions, the results may be biased or suffer
from undersampling systematics.

– The parameter space is inherently non-linear and highly degenerate. The
choice of input parameters is thus crucial for emulator performance and
result fidelity. Should any of the principal parameters be omitted, or if the
chosen parameters are not orthogonal, the emulator will be misspecified and
the results will be biased.

These limitations can be controlled with a careful optimization of the neural
network topology and the construction of the training set. Once optimized and
trained, the emulator is ready to be used as a drop-in replacement of the physical
model. That includes the optimization stage and the sampling stage: given the
data, the emulator is able to minimize the cost function and to sample the
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probability density. It is able to do so in a ∼millionth of the physical model’s
time cost.

As proof of concept, we trained an emulator on 6 photometric parameters:
the effective temperature ratio T2/T1, eccentricity e, argument of periastron ω,
orbital inclination i, the sum of fractional radii r1 + r2, and their ratio r2/r1.
For efficiency, we replaced e and ω with e sinω and e cosω, and i with cos i. The
parameters were sampled from distributions that cover a wide enough range
to encompass the case study light curves. The network was trained on ∼600k
light curves synthesized using PHOEBE. As outputs, the network used phase-
folded light curves sampled in 500 points. We denote this emulator PHOEBAI:
PHOEBE via AI (Wrona & Prša, 2024).

The topology of the network was determined by the RandomizedSearchCV

method (Bergstra & Bengio, 2012) from the sklearn library (Pedregosa et al.,
2011). The method evaluated thousands of structures with varying numbers
of hidden layers, nodes, and activation functions. The chosen shape was the
simplest among the best performing in terms of minimizing the sum of residual
squares between predicted and actual sets of light curves. It comprises four
hidden layers with 512, 512, 512, and 1024 nodes, with the sigmoid activation
function.

Application of this network was tested on a subset of EBs from the TESS
EB catalog (Prša et al., 2022) that matched our training set distributions.
The optimizer utilized differential evolution (Storn & Price, 1997) from the
scipy.optimize library (Virtanen et al., 2020). The final results from this op-
timization were subsequently used as starting values for MCMC sampling using
the emcee Python library (Foreman-Mackey et al., 2019).

During the sampling process, we employed 80 walkers and 4000 iterations
to obtain posterior distributions. Fig. 3 compares PHOEBAI and PHOEBE
performance on a detached EB, TIC 279097693. This is a typical (rather than
cherry-picked) result from the test sample: it shows that PHOEBAI is able to
accurately capture both the posteriors and parameter correlations.

4. Conclusions

As we continue to be inundated with high-quality data, we need to distinguish
between “boutique” operation and bulk processing. When our understanding of
the physical processes can be advanced by pointed investigations of individual
objects, the well-established methods and codes remain indispensable. On the
other hand, to understand large sample properties and parameter distributions
that probe the outcomes of stellar formation and evolution principles, we need to
rely on novel methods. One such method, presented in this paper, employs feed-
forward neural networks. It is important to realize that it is not the only way or
even the preferred way to model large swaths of data, but – as demonstrated here
– PHOEBAI certainly shows promise in delivering robust results on par with
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Figure 3. Sampling results for TIC 279097963, a detached EB observed by TESS

in Sector 4. The top right panel depicts a phase-folded light curve with the best–

fit PHOEBE model (red) and the best-fit PHOEBAI model (cyan), along with the

residuals, plotted over data. The panel below zooms in on the primary eclipse, demon-

strating that the residuals are due to the coarse phase sampling. The corner plot

compares parameter posteriors (diagonal) and 2-D correlations (off-diagonal) for the 6

sampled parameters with PHOEBE (red) and PHOEBAI (cyan). PHOEBAI posteri-

ors are better sampled but slightly narrower. Overall, there is a remarkable agreement

between the two approaches, where PHOEBAI performed ∼250, 000 times faster than

the PHOEBE sampler.
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the physical engines. Above all, it remains vital to understand the limitations
and ranges of application for both the physics-based models and the AI-based
emulators and to use them appropriately.

Acknowledgements.
The author would like to acknowledge NASA award 23-ADAP23-0068 that funded

in part the work presented in this paper.

References

Bergstra, J. & Bengio, Y., Random Search for Hyper-Parameter Optimization. 2012,
J. Mach. Learn. Res., 13, 281–305

Borucki, W. J., Koch, D., Basri, G., et al., Kepler Planet-Detection Mission: Introduc-
tion and First Results. 2010, Science, 327, 977, DOI:10.1126/science.1185402

Carter, J. A., Fabrycky, D. C., Ragozzine, D., et al., KOI-126: A Triply Eclipsing
Hierarchical Triple with Two Low-Mass Stars. 2011, Science, 331, 562, DOI:10.

1126/science.1201274

Chen, L., Chen, P., & Lin, Z., Artificial Intelligence in Education: A Review. 2020,
IEEE Access, 8, 75264, DOI:10.1109/ACCESS.2020.2988510

Conroy, K. E., Kochoska, A., Hey, D., et al., Physics of Eclipsing Binaries. V. General
Framework for Solving the Inverse Problem. 2020, Astrophysical Journal, Supple-
ment, 250, 34, DOI:10.3847/1538-4365/abb4e2

Foreman-Mackey, D., Farr, W. M., Sinha, M., et al. 2019, emcee v3: A Python ensem-
ble sampling toolkit for affine-invariant MCMC, Zenodo

Freeman, J. A. & Skapura, D. M. 1991, Neural networks: algorithms, applications,
and programming techniques (Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc.), ISBN: 0-201-51376-5

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al., Gaia Early Data Release 3.
Summary of the contents and survey properties. 2021, Astronomy and Astrophysics,
649, A1, DOI:10.1051/0004-6361/202039657

Kallrath, J. & Linnell, A. P., A New Method to Optimize Parameters in Solutions
of Eclipsing Binary Light Curves. 1987, Astrophysical Journal, 313, 346, DOI:10.
1086/164971
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Prša, A. & Zwitter, T., Introducing Powell’s Direction Set Method to a Fully Au-
tomated Analysis of Eclipsing Binary Stars. 2007, in Astronomical Society of the
Pacific Conference Series, Vol. 370, Solar and Stellar Physics Through Eclipses, ed.
O. Demircan, S. O. Selam, & B. Albayrak, 175

Ricker, G. R., Winn, J. N., Vanderspek, R., et al., Transiting Exoplanet Survey Satel-
lite (TESS). 2015, Journal of Astronomical Telescopes, Instruments, and Systems,
1, 014003, DOI:10.1117/1.JATIS.1.1.014003

Russell, H. N., The Royal Road of Eclipses. 1948, 7, 181

Secinaro, S., Calandra, D., & Secinaro, A. e. a., The role of artificial intelligence in
healthcare: a structured literature review. 2021, BMC Med Inform Decis Mak, 21,
125, DOI:10.1186/s12911-021-01488-9

Storn, R. & Price, K., Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. 1997, J. of Global Optimization, 11,
341–359, DOI:10.1023/A:1008202821328
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