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Abstract. We focus on the automated classification of eclipsing binary stars
using deep learning methods to handle the vast data generated by large-scale
photometric sky surveys. These surveys produce extensive datasets that are
impractical for manual analysis. By using machine learning to classify eclipsing
binary stars based on light curve morphology, this study aims to contribute to
the efforts to efficiently process and accurately interpret massive data from
projects Kepler, TESS and Gaia missions.
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1. Introduction

Eclipsing binaries, whose light curves show brightness variations from mutual
eclipses, have large sets of photometric survey data. Automated data processing,
leveraging supervised and unsupervised machine learning (ML) are essential to
efficiently analyze these massive datasets and identifying patterns in time-series
data.

Daza-Perilla et al. (2023) utilized ML to classify eclipsing binary stars (EBs)
in the VISTA Variables of the Vı́a Láctea Survey (VVV), revealing time-series
features in light curves and introducing a Compound Decision Tree (CDT)
model for their classification. Čokina et al. (2021) classified eclipsing binary light
curves into detached and over-contact classes. A hybrid of Bidirectional Long
Short Term Memory (BiLSTM) and one dimensional Convolutional Neural Net-
work (1D CNN), achieved 98% accuracy, and reached 100% when semi-detached
binaries were excluded. Bódi & Hajdu (2021) used the Locally Linear Embedding
(LLE) algorithm for classifying the Optical Gravitational Lensing Experiment
(OGLE) eclipsing binary light curves based on their morphology. Süveges, M.
et al. (2017) applied ML methods, including Functional Principal Component
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Analysis (FPCA), Linear Discriminant Analysis (LDA), Random Forest (RF),
and Self-Organizing Map (SOM), to classify eclipsing binaries based on light
curve morphology using datasets from Catalog and Atlas of Eclipsing Bina-
ries (CALEB), High Precision Parallax Collecting Satellite (HIPPARCOS), and
Kepler. Kochoska, A. et al. (2017) proposed a combination of the t-distributed
Stochastic Neighbor Embedding (t-SNE) and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithms for the purposes of eclips-
ing binary light curve classification. The polynomial chain (polyfit) and two-
Gaussian models are used to characterize the geometry of the folded light curves.
Classification is done according to the morphology parameter for a given system.

This study aims to contribute to the efforts in reliable and rapid classifica-
tion of eclipsing binaries, enabling statistically reproducible results across vast
astronomical databases. We classify a limited sample of eclipsing binary star
candidates in the Gaia DR3 archive. We utilize Transiting Exoplanet Survey
Satellite (TESS)1 and Kepler2 light curve data in the Villanova eclipsing binary
catalogs, where the systems are ready to be labeled according to the morphology
parameter (Matijevič et al., 2012), to train our CNN model. We then apply the
trained model to classify our sample of eclipsing binaries from the Gaia Data
Release 3 (DR3) archive.

2. Data and methods

Villanova Kepler and TESS eclipsing binary archives are used for training ML
model. 2907 Kepler and 4349 TESS EB light curves are taken and labeled ac-
cording to morphology parameter by the following criteria (Matijevič et al.,
2012);

morph < 0.5 detached (D)

0.5 < morph < 0.7 semidetached (SD)

0.7 < morph < 0.8 overcontact (OC)

0.8 < morp ellipsoidal (E)

The light curves are phase-folded by using light elements taken from Vil-
lanova archives and binned uniformly to standardize their resolution, ensuring
consistency across datasets (Fig.1).

For classification, a small sample including 2106 EB’s were selected from
Gaia DR3 archive. We provide a few of these binned and phase-folded light
curves in Fig.2 (left) as examples. Light curves had to be processed based on
two Gaussian and a cosine function due to their sampling and intensity scaling
as presented in Mowlavi, N. et al. (2023) (Fig.2 right).

1https://tessebs.villanova.edu
2https://keplerebs.villanova.edu

https://tessebs.villanova.edu
https://keplerebs.villanova.edu
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Figure 1. Sample detached (top left), semidetached (top right), overcontact (bottom

left), ellipsoidal (bottom right) Kepler and TESS light curves.

Figure 2. Sample Gaia DR3 light curves (left) and their modeled light curves (right).

The selected binaries are also in the Kepler or TESS archive. Out of 2106
EB’s 789 are from Kepler archive and 1317 are from TESS archive. So we can
crossmatch the labeled and the predicted classes.

We converted light curve data of Kepler and TESS EBs to Portable Network
Graphic (PNG) image files by a Python code we developed for the task. Then
these light curve images were splitted into 3 groups: 67% for training, 25% for
validation and 8% for test. We used VGG-19 as the ML model. VGG-19 is a
pretrained CNN from Visual Geometry Group (VGG) Department of Engineer-
ing Science, Oxford University. The number 19 stands for the number of layers
with trainable weights. We chose VGG-19 for its ability to effectively extract
nuanced features from light curve data, such as subtle variations in amplitude,
shape and periodicity. VGG-19’s fine-tuning, combined with the use of regular-
ization techniques, provided results without overfitting. We used ”reduce LR on
plateau” and ”early stopping” methods to avoid overfitting. We also conducted
experiments with varying hyperparameters and confirmed that overtraining did
not occur.
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3. Results and discussion

We achieved 91% accuracy on Kepler and TESS test data and 64% accuracy
on Gaia DR3 data as given with the confusion matrix in Fig.3. Our ML model
is highly successful on semidetached class, while it tends to predict overcontact
binaries as semidetached.

Figure 3. Confusion matrix.

Training of the ML model is one of the important steps. The Kepler and
TESS light curves that we used for training should be modeled in the same way
as the Gaia light curves. This is the reason why the model was successful in
classifying the test data, but partially failed in classifying the Gaia data. We
plan to explore additional modeling techniques, including smoothing and fitting
analytic models, for improved consistency and interpretability in future studies.

Although model accuracy could probably be improved with a larger and more
homogeneous dataset, our primary focus was to establish a proof of concept and
identify potential challenges to this classification task. As part of our ongoing
work, additional observation archives are being explored to expand the training
dataset and improve the robustness and performance of the model.

We used ”phase folding method” for the acquisition of the relevant light
curve information. Harmonic analysis can be used to determine characteristics
of the light curves. Integration of spot-induced effects as well as modulations



Eclipsing binary classification with machine learning techniques 361

caused by reflection and ellipsoidal deformation in close binary systems could
enhance the precision of future models, particularly for more detailed analy-
sis of system parameters. Spot-induced variations are generally low-amplitude
compared to the primary eclipse features in eclipsing binaries. Despite such vari-
ations, classification accuracy is found to be similar across diverse types of light
curves with varying levels of spot activity.
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