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2 Astronomical Institute of the Czech Academy of Sciences
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Abstract. This paper presents a deep-learning model for predicting the photo-
metric parameters of W UMa-type eclipsing binaries without spots. The model
assumes that the light curve (LCs) can be described by four parameters: the
orbital inclination, photometric mass ratio, temperature ratio, and common
potential. The training dataset comprises 500 000 simulated LCs in the Gaia
G passband. The best results were obtained using the random forest predic-
tor, achieving a Mean Absolute Percentage Error (MAPE) of 6.1%. The study
concluded that the quality of parameter prediction strongly depends on the
quality of the analyzed LCs curves, requiring careful data preprocessing.
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1. Introduction

Eclipsing binary stars of the W UMa type (overcontact binaries) are a type of
close binary system in which both stars are so close that they share a common
envelope of material. Their shapes are strongly distorted by tidal forces and
the frame of Roche geometry allows us to describe their common surface by its
potential (Prša, 2018). These systems are among the most frequently found vari-
able stars because of their short orbital period (up to 1 d) and typical light-curve
(LC) shape. Space and ground-based surveys discovered several tens of thou-
sands of such systems; however, only a small fraction of them determined their
photometric parameters. These parameters can be obtained from the solutions
of the LCs. However, several software packages dedicated to LCs solutions for
eclipsing binaries exist, such as the PHOEBE (Conroy et al., 2020), JKTEBOP
(Southworth et al., 2004), and ELISa (Čokina et al., 2021), this procedure is
not straightforward. It requires strong interaction with the user and a qualified
estimate of the initial parameters. This paper presents a deep-learning model
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for predicting the photometric parameters of W UMa-type eclipsing binaries
that are unaffected by spots. This prediction model assumes that the LC can
be described by four parameters: the orbital inclination i, photometric mass
ratio q, the temperature ratio t1/t2 and common potential Ω. These parame-
ters determine the shapes of stars, their relative dimensions, and their radiation
properties.

2. Training and evaluation dataset

The training dataset was created using the ELISa code (Čokina et al., 2021).
The LCs of the overcontact binaries were simulated from parameters covering a
wide range of physically correct star values, using a random uniform distribution
in the intervals used (Tab. 1). In total, 500 000 LCs were created in the Gaia G
passband.

Table 1. Parameters and intervals used for the simulated LCs.

Parameter Interval
i 40-90◦

q 0.05-2.0
Ω 2.0-4.0

t1/t2 1.0-1.3

To evaluate our model, we randomly selected 100 LCs of a set of overcontact
eclipsing binaries from the Gaia catalogue of eclipsing binaries (Mowlavi et al.,
2023), as classified by Parimucha et al. (2024). All LCs were manually fitted
using the ELISa code to determine the basic parameters of the systems. The
Gaia LCs were preprocessed (outlier removal), rebinned to 100 data points,
folded, and normalized to the median flux.

3. Deep learning model and its performance

To train our models, we used all the simulated LCs and the dataset was expanded
using Gaussian noise augmentation. The 20% of them were randomly selected
for validation of the trained model. We tested several models using different
machine-learning algorithms including gradient boosting, random forest, linear,
quadratic, and logistic regressions, as well as several convolution networks. The
quality of the model was tested on the validation dataset and quantified by
the MAPE (Mean Absolute Percentage Error) parameter. The best results were
obtained by the random forest predictor, which achieved a MAPE value of 6.1%.
Examples of predicted and fitted LCs are shown in Fig. 1.
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Figure 1. The examples of the predicted and fitted LCs of four overcontact eclipsing

binaries from the Gaia catalogue.

4. Discussions

Our study leads to several conclusions. Most importantly, the quality of predic-
tion of the parameters strongly depends on the quality of the analyzed LCs and
careful data preprocessing is required. We require good data coverage, remove
outliers, and ensure the curve is phase-folded well. The prediction is sensitive
mainly to outliers, which is evident for curves with few data points. We also note
that the space of the simulated LCs must be sufficiently dense, and a random
uniform distribution of parameters appears to be a good solution. The param-
eters predicted by our model are good starting points for analysis using other
methods such as LSQ and/or MCMC fitting to obtain precise results with pa-
rameter errors. Subsequent analysis of the residua can reveal bad classifications
and/or LC anomalies such as spots and pulsations.
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